61 research outputs found

    Deglaciation constraints in the Parâng Mountains, Southern Romania, using surface exposure dating

    Get PDF
    Cosmogenic nuclide surface exposure ages have been widely used to constrain glacial chronologies in the European regions. This paper brings new evidence that the Romanian Carpathians sheltered mountain glaciers in their upper valleys and cirques until the end of the last glaciation. Twenty-four 10Be surface exposure ages were obtained from boulders on moraine crests in the central area of the Parâng Mountains, Southern Carpathians. Exposure ages were used to constrain the timing of the deglaciation events during the Late Glacial. The lowest boulders yielded an age of 13.0 ± 1.1 (1766 m) and final deglaciation occurred at 10.2 ± 0.9 ka (2055 m). Timing of the Late Glacial events and complete deglaciation reported in this study are consistent with, and confirm, previously reported ages of deglaciation within the Carpathian and surrounding European region

    Improving Link Reliability through Network Coding in Cooperative Cellular Networks

    Get PDF
    The paper proposes a XOR-based network coded cooperation protocol for the uplink transmission of relay assisted cellular networks and an algorithm for selection and assignment of the relay nodes. The performances of the cooperation protocol are expressed in terms of network decoder outage probability and Block Error Rate of the cooperating users. These performance indicators are analyzed theoretically and by computer simulations. The relay nodes assignment is based on the optimization, according to several criteria, of the graph that describes the cooperation cluster formed after an initial selection of the relay nodes. The graph optimization is performed using Genetic Algorithms adapted to the topology of the cooperation cluster and the optimization criteria considered

    Freeze-Drying of Mononuclear Cells Derived from Umbilical Cord Blood Followed by Colony Formation

    Get PDF
    BACKGROUND: We recently showed that freeze-dried cells stored for 3 years at room temperature can direct embryonic development following cloning. However, viability, as evaluated by membrane integrity of the cells after freeze-drying, was very low; and it was mainly the DNA integrity that was preserved. In the present study, we improved the cells' viability and functionality after freeze-drying. METHODOLOGY/PRINCIPAL FINDINGS: We optimized the conditions of directional freezing, i.e. interface velocity and cell concentration, and we added the antioxidant EGCG to the freezing solution. The study was performed on mononuclear cells (MNCs) derived from human umbilical cord blood. After freeze-drying, we tested the viability, number of CD34(+)-presenting cells and ability of the rehydrated hematopoietic stem cells to differentiate into different blood cells in culture. The viability of the MNCs after freeze-drying and rehydration with pure water was 88%-91%. The total number of CD34(+)-presenting cells and the number of colonies did not change significantly when evaluated before freezing, after freeze-thawing, and after freeze-drying (5.4 x 10(4)+/-4.7, 3.49 x 10(4)+/-6 and 6.31 x 10(4)+/-12.27 cells, respectively, and 31+/-25.15, 47+/-45.8 and 23.44+/-13.3 colonies, respectively). CONCLUSIONS: This is the first report of nucleated cells which have been dried and then rehydrated with double-distilled water remaining viable, and of hematopoietic stem cells retaining their ability to differentiate into different blood cells

    Disposable sensors in diagnostics, food and environmental monitoring

    Get PDF
    Disposable sensors are low‐cost and easy‐to‐use sensing devices intended for short‐term or rapid single‐point measurements. The growing demand for fast, accessible, and reliable information in a vastly connected world makes disposable sensors increasingly important. The areas of application for such devices are numerous, ranging from pharmaceutical, agricultural, environmental, forensic, and food sciences to wearables and clinical diagnostics, especially in resource‐limited settings. The capabilities of disposable sensors can extend beyond measuring traditional physical quantities (for example, temperature or pressure); they can provide critical chemical and biological information (chemo‐ and biosensors) that can be digitized and made available to users and centralized/decentralized facilities for data storage, remotely. These features could pave the way for new classes of low‐cost systems for health, food, and environmental monitoring that can democratize sensing across the globe. Here, a brief insight into the materials and basics of sensors (methods of transduction, molecular recognition, and amplification) is provided followed by a comprehensive and critical overview of the disposable sensors currently used for medical diagnostics, food, and environmental analysis. Finally, views on how the field of disposable sensing devices will continue its evolution are discussed, including the future trends, challenges, and opportunities

    Hybrid Nanocomposite Platform, Based on Carbon Nanotubes and Poly(Methylene Blue) Redox Polymer Synthesized in Ethaline Deep Eutectic Solvent for Electrochemical Determination of 5-Aminosalicylic Acid

    No full text
    A novel hybrid composite of conductive poly(methylene blue) (PMB) and carbon nanotubes (CNT) was prepared for the detection of 5-aminosalicylic acid (5-ASA). Electrosynthesis of PMB with glassy carbon electrode (GCE) or with carbon nanotube modified GCE was done in ethaline deep eutectic solvent of choline chloride mixed with ethylene glycol and a 10% v/v aqueous solution. Different sensor architectures were evaluated in a broad range of pH values in a Britton-Robinson (BR) buffer using electrochemical techniques, chronoamperometry (CA), and differential pulse voltammetry (DPV), to determine the optimum sensor configuration for 5-ASA sensing. Under optimal conditions, the best analytical performance was obtained with CNT/PMBDES/GCE in 0.04 M BR buffer pH 7.0 in the range 5–100 µM 5-ASA using the DPV method, with an excellent sensitivity of 9.84 μA cm−2 μM−1 (4.9 % RSD, n = 5) and a detection limit (LOD) (3σ/slope) of 7.7 nM, outclassing most similar sensors found in the literature. The sensitivity of the same sensor obtained in CA (1.33 μA cm−2 μM−1) under optimal conditions (pH 7.0, Eapp = +0.40 V) was lower than that obtained by DPV. Simultaneous detection of 5-ASA and its analogue, acetaminophen (APAP), was successfully realized, showing a catalytic effect towards the electro-oxidation of both analytes, lowering their oxidation overpotential, and enhancing the oxidation peak currents and peak-to-peak separation as compared with the unmodified electrode. The proposed method is simple, sensitive, easy to apply, and economical for routine analysis

    The Detection of Mutations and Genotyping of Drug-Resistant <i>Mycobacterium tuberculosis</i> Strains Isolated from Patients in the Rural Eastern Cape Province

    No full text
    Drug-resistant tuberculosis (DR-TB) is still a major public health concern in South Africa. Mutations in M. tuberculosis can cause varying levels of phenotypic resistance to anti-TB medications. There have been no prior studies on gene mutations and the genotyping of DR-TB in the rural Eastern Cape Province; hence, we aimed to identify DR-TB mutations, genetic diversity, and allocated lineages among patients in this area. Using Xpert® MTB/RIF, we assessed the rifampin resistance of sputum samples collected from 1157 patients suspected of having tuberculosis. GenoType MTBDR plus VER 2.0 was used for the detection of mutations causing resistance to anti-TB medications. The next step was to spoligotype 441 isolates. The most prevalent rifampin resistance-conferring mutations were in rpoB codon S531L in INH-resistant strains; the katG gene at codon S315TB and the inhA gene at codon C-15TB had the most mutations; 54.5% and 24.7%, respectively. In addition, 24.6% of strains showed mutations in both the rpoB and inhA genes, while 69.9% of strains showed mutations in both the katG and rpoB genes. Heteroresistance was seen in 17.9% of all cases in the study. According to spoligotyping analysis, Beijing families predominated. Investigation of the evolutionary lineages of M. tuberculosis isolates can be carried out using the information provided by the study’s diversity of mutations. In locations wherein these mutations have been discovered, decision-making regarding the standardization of treatment regimens or individualized treatment may be aided by the detection frequency of rpoB, katG, and inhA mutations in various study areas
    corecore