515 research outputs found

    Professional Reading

    Get PDF
    Soldiers Without Enemie

    \u27While we can, we will\u27: exploring food choice and dietary behaviour amongst independent older Australians

    Get PDF
    Aim Burgeoning proportions of populations aged over 65 years impose an increased financial burden upon governments for the provision of associated health and aged-care services. Strategies are therefore required to mitigate service demand through the preservation of good health and independence into old age. Nutrition has been acknowledged as a key factor for realisation of this goal. The objective of the present study was to investigate factors responsible for shaping food shopping, cooking and eating behaviours amongst healthy, independently living Australians aged 60 years and over. Methods Eighteen (5 male, 13 female) independently living residents sourced from three low-care Illawarra Retirement Trust (IRT) lifestyle residential facilities volunteered to take part in the present study. All participants were aged 60 years or more and in relatively good health. Semi-structured focus groups were implemented to explore factors influencing the selection, acquisition and preparation of food. Each session was digitally recorded, transcribed verbatim and subsequently examined using content and thematic analysis. Results Ten sub-themes were identified and grouped into three broader themes: adaptation, psychosocial parameters and food landscape. Findings reflect an active self-determination to retain independence, with a focus on the maintenance of favourable nutritional status. A sense of resourcefulness was evident through the development of strategies to overcome potential barriers to healthy eating. Conclusions Factors that influence the food choices of community-living older Australians are complex and multifactorial, and underpinned by a strong desire for independence and control over personal health outcomes. Studies involving larger, more demographically diverse participant groups are required to elicit socially acceptable strategies that will empower older Australians to sustain their health and independence for the longer term

    Novel Phased Array Scanning Employing A Single Feed Without Using Individual Phase Shifters

    Get PDF
    Phased arrays afford many advantages over mechanically steered systems. However, they are also more complex, heavy, and most of all costly. The high cost mainly originates from the complex feeding structure. This paper proposes a novel feeding scheme to eliminate all phase shifters and achieve scanning via one-dimensional motion. Beam scanning is achieved via a series fed array incorporating feeding transmission lines whose wave velocity can be mechanically adjusted. Along with the line design, ideal element impedances to be used in conjunction with the line are derived. Practical designs are shown which achieve scanning to +/-30deg from boresight. Finally, a prototype is fabricated and measured, demonstrating the concept

    Ku-Band Traveling Wave Slot Array Using Simple Scanning Control

    Get PDF
    This poster introduces a feeding concept aimed at simplifying the backend (phase shifters) of traditional phased arrays. As an alternative to traditional phased arrays, we employ a traveling wave array (TWA) using a single feedline whose propagation constant is controlled via a single, small mechanical movement without a need for phase shifters to enable scanning. Specifically, a dielectric plunger is positioned within a parallel plate waveguide (PPW) transmission line (TL) that feeds the TWA. By adjusting the position of the dielectric plunger within the PPW feeding the TWA, beam steering is achieved. A 20-element array is designed at 13 gigaherz shown to give stable realized gain across the angular range of minus 25 degrees less than or equal to theta and less than or equal to 25 degrees. A proof of concept array is fabricated and measured to demonstrate and validate the concept's operation

    Implementation of a Novel Low-Cost Low-Profile Ku-Band Antenna Array for Single Beam Steering from Space

    Get PDF
    Phased array antennas afford many advantages over traditional reflector antennas due to their conformality, high aperture efficiency, and unfettered beam steering capability at the price of increased cost and complexity. This paper eliminates the complex and costly array backend via the implementation of a series fed array employing a propagation constant reconfigurable transmission line connecting each element in series. Scanning can then be accomplished through one small (less than or equal to 100mil) linear motion that controls propagation constant. Specifically, each element is fed via a reconfigurable coplanar stripline transmission line with a tapered dielectric insert positioned between the transmission line traces. The dielectric insert is allowed to move up and down to control propagation constant and therefore induce scanning. We present a 20 element patch array design, scanning from -25 deg. less than or equal to theta less than or equal to 21 deg. at 13GHz. Measurements achieve only10.5 deg. less than or equal to theta less than or equal to 22 deg. scanning due to a faulty, yet correctable, manufacturing process. Beam squint is measured to be plus or minus 3 deg. for a 600MHz bandwidth. This prototype was improved to give scanning of 3.5 deg. less than or equal to theta less than or equal to 22 deg. Cross-pol patterns were shown to be -15dB below the main beam. Simulations accounting for fabrication errors match measured patterns, thus validating the designs

    Reconfigurable Transmission Line for a Series-Fed Ku-Band Phased Array Using a Single Feed

    Get PDF
    The paper presents a novel approach to realize a lowcost phased array using a simple feeding mechanism. Specifically, a single coplanar stripline (CPS) transmission line is used to feed the antenna array elements. By controlling the CPS's dielectric properties using a movable dielectric plunger, scanning is achieved. Due to its simplicity, single feed, and no phase shifters, this approach leads to a dramatic reduction in cost which does not scale for larger arrays

    Ku-Band Traveling Wave Slot Array Using Simple Scanning Control

    Get PDF
    This paper introduces a feeding concept aimed at simplifying the backend (phase shifters) of traditional phased arrays. As an alternative to traditional phased arrays, we employ a traveling wave array (TWA) using a single feedline whose propagation constant is controlled via a single, small mechanical movement without a need for phase shifters to enable scanning. Specifically, a dielectric plunger is positioned within a parallel plate waveguide (PPW) transmission line (TL) that feeds the TWA. By adjusting the position of the dielectric plunger within the PPW feeding the TWA, beam steering is achieved. A 20 element array is designed at 13GHz shown to give stable realized gain across the angular range of -25 deg. less than or equal to theta less than or equal to 25 deg. A proof of concept array is fabricated and measured to demonstrate and validate the concept's operation

    Atomic-Scale Terahertz Near Fields for Ultrafast Tunnelling Spectroscopy

    Full text link
    Lightwave-driven terahertz scanning tunnelling microscopy (THz-STM) is capable of exploring ultrafast dynamics across a wide range of materials with angstrom resolution. In contrast to scanning near-field optical microscopy, where photons scattered by the tip apex are analyzed to access the local dielectric function on the nanoscale, THz-STM uses a strong-field single-cycle terahertz pulse to drive an ultrafast current across a tunnel junction, thereby probing the local density of electronic states. Yet, the terahertz field in a THz-STM junction may also be spectrally modified by the electromagnetic response of the sample. Here, we demonstrate a reliable and self-consistent approach for terahertz near-field waveform acquisition in an atomic tunnel junction that can be generally applied to electrically conductive surfaces. By combining waveform sampling and tailoring with terahertz scanning tunnelling spectroscopy (THz-STS), we comprehensively characterize the tunnel junction and distinguish local sample properties from effects due to terahertz pulse coupling and field enhancement. Through modelling, we verify the presence of an isolated unipolar terahertz-induced current pulse, facilitating straightforward interpretation for differential THz-STS with high spectral resolution. Finally, we demonstrate the feasibility of atomic-scale terahertz time-domain spectroscopy via the extremely localized near-fields in the tunnel junction

    What it takes to measure a fundamental difference between dark matter and baryons: the halo velocity anisotropy

    Full text link
    Numerous ongoing experiments aim at detecting WIMP dark matter particles from the galactic halo directly through WIMP-nucleon interactions. Once such a detection is established a confirmation of the galactic origin of the signal is needed. This requires a direction-sensitive detector. We show that such a detector can measure the velocity anisotropy beta of the galactic halo. Cosmological N-body simulations predict the dark matter anisotropy to be nonzero, beta~0.2. Baryonic matter has beta=0 and therefore a detection of a nonzero beta would be strong proof of the fundamental difference between dark and baryonic matter. We estimate the sensitivity for various detector configurations using Monte Carlo methods and we show that the strongest signal is found in the relatively few high recoil energy events. Measuring beta to the precision of ~0.03 will require detecting more than 10^4 WIMP events with nuclear recoil energies greater than 100 keV for a WIMP mass of 100 GeV and a 32S target. This number corresponds to ~10^6 events at all energies. We discuss variations with respect to input parameters and we show that our method is robust to the presence of backgrounds and discuss the possible improved sensitivity for an energy-sensitive detector.Comment: 15 pages, 8 figures, accepted by JCAP. Matches accepted versio
    • …
    corecore