

Ku-Band Traveling Wave Slot Array Using Simple Scanning Control

Abstract: This poster introduces a feeding concept aimed at simplifying the backend (phase shifters) of traditional phased arrays. As an alternative to traditional phased arrays, we employ a traveling wave array (TWA) using a single feedline whose propagation constant is controlled via a single, small mechanical movement without a need for phase shifters to enable scanning. Specifically, a dielectric plunger is positioned within a parallel plate waveguide (PPW) transmission line (TL) that feeds the TWA. By adjusting the position of the dielectric plunger within the PPW feeding the TWA, beam steering is achieved. A 20 element array is designed at 13GHz shown to give stable realized gain across the angular range of $-25^{\circ} \le \theta \le 25^{\circ}$. A proof of concept array is fabricated and measured to demonstrate and validate the concept's operation.

Transmission Line Design

- Scan range a function of element spacing and TL k_{eff}
- $-30^\circ \le \theta \le 30^\circ$ scanning is achieved with $1.04 \leq \frac{k_{eff}}{k} \leq 2.04$
- for and element spacing of 0.65λ • Line achieves the necessary k_{eff} agility at $H_2 = 270 mil$

Nicholas K. Host¹, Chi-Chih Chen², John L. Volakis², and Félix A. Miranda³ Applied Physics Laboratory¹, Ohio State University², and NASA John H. Glenn Research Center³

Field mostly in Dielectric \rightarrow High ε_{eff} Fully inserted plunger position Field mostly in air \rightarrow Low ε_{eff}

- detuned as the plunger is
- Resonant length of the cavity position

- we lower the Q value
- coupling to each element
- achievable is desired

Initial Design Performance

Increased Manufacturability

Variable	Initial Design	Final Design
Cavity Back	Straight	Stepped
H_D	350mil	250mil
С	10mil	5mil
Element Spacing	0.65λ	0.54λ

- Measurements generally agree with simulation
- Realized gain is down compared to simulated due to differences in TL geometry
- Measured scan angle is more positive, also due to differences in TL geometry