479 research outputs found

    Higher-dimensional solitons and black holes with a non-minimally coupled scalar field

    Get PDF
    We study higher-dimensional soliton and hairy black hole solutions of the Einstein equations non-minimally coupled to a scalar field. The scalar field has no self-interaction potential but a cosmological constant is included. Non-trivial solutions exist only when the cosmological constant is negative and the constant governing the coupling of the scalar field to the Ricci scalar curvature is positive. At least some of these solutions are stable when this coupling constant is not too large.Comment: 17 pages, revtex4, 21 figures, minor changes to match published versio

    Information gap for classical and quantum communication in a Schwarzschild spacetime

    Get PDF
    Communication between a free-falling observer and an observer hovering above the Schwarzschild horizon of a black hole suffers from Unruh-Hawking noise, which degrades communication channels. Ignoring time dilation, which affects all channels equally, we show that for bosonic communication using single and dual rail encoding the classical channel capacity reaches a finite value and the quantum coherent information tends to zero. We conclude that classical correlations still exist at infinite acceleration, whereas the quantum coherence is fully removed.Comment: 5 pages, 4 figure

    Clinical surveillance of thrombotic microangiopathies in Scotland, 2003-2005

    Get PDF
    The prevalence, incidence and outcomes of haemolytic uraemic syndrome (HUS) and thrombotic thrombocytopaenic purpura (TTP) are not well established in adults or children from prospective studies. We sought to identify both outcomes and current management strategies using prospective, national surveillance of HUS and TTP, from 2003 to 2005 inclusive. We also investigated the links between these disorders and factors implicated in the aetiology of HUS and TTP including infections, chemotherapy, and immunosuppression. Most cases of HUS were caused by verocytotoxin-producing Escherichia coli (VTEC), of which serotype O157 predominated, although other serotypes were identified. The list of predisposing factors for TTP was more varied although use of immunosuppressive agents and severe sepsis, were the most frequent precipitants. The study demonstrates that while differentiating between HUS and TTP is sometimes difficult, in most cases the two syndromes have quite different predisposing factors and clinical parameters, enabling clinical and epidemiological profiling for these disorders

    NASA/ASEE Summer Faculty Fellowship Program. 1994 research reports

    Get PDF
    This document is a collection of technical reports on research conducted by the participants in the 1994 NASA/ASEE Summer Faculty Fellowship Program at Kennedy Space Center (KSC). This was the tenth year that a NASA/ASEE program has been conducted at KSC. The 1994 program was administered by the University of Central Florida in cooperation with KSC. The program was operated under the auspices of the American Society for Engineering Education (ASEE) with sponsorship and funding from the Office of Educational Affairs, NASA Headquarters, Washington, D.C. The KSC Program was one of nine such Aeronautics and Space Research Programs funded by NASA Headquarters in 1994. The NASA/ASEE program is intended to be a two-year program to allow in-depth research by the University faculty member. The editors of this document were responsible for selecting appropriately qualified faculty to address some of the many problems of current interest to NASA/KSC

    The Yeast Mitochondrial Proteins Rcf1 And Rcf2 Support the Enzymology of The Cytochrome C Oxidase Complex and Generation of The Proton Motive Force

    Get PDF
    The yeast mitochondrial proteins Rcf1 and Rcf2 are associated with a subpopulation of the cytochrome bc1–cytochrome c oxidase supercomplex and have been proposed to play a role in the assembly and/or modulation of the activity of the cytochrome c oxidase (complex IV, CIV). Yeast mutants deficient in either Rcf1 or Rcf2 proteins can use aerobic respiration–based metabolism for growth, but the absence of both proteins results in a strong growth defect. In this study, using assorted biochemical and biophysical analyses of Rcf1/Rcf2 single and double null-mutant yeast cells and mitochondria, we further explored how Rcf1 and Rcf2 support aerobic respiration and growth. We show that the absence of Rcf1 physically reduces the levels of CIV and diminishes the ability of the CIV that is present to maintain a normal mitochondrial proton motive force (PMF). Although the absence of Rcf2 did not noticeably affect the physical content of CIV, the PMF generated by CIV was also lower than normal. Our results indicate that the detrimental effects of the absence of Rcf1 and Rcf2 proteins on the CIV complex are distinct in terms of CIV assembly/accumulation and additive in terms of the ability of CIV to generate PMF. Thus, the combined absence of Rcf1 and Rcf2 alters both CIV physiology and assembly. We conclude that the slow aerobic growth of the Rcf1/Rcf2 double null mutant results from diminished generation of mitochondrial PMF by CIV and limits the level of CIV activity required for maintenance of the PMF and growth under aerobic conditions

    Hypoxia-inducible Gene Domain 1 Proteins in Yeast Mitochondria Protect Against Proton Leak Through Complex IV

    Get PDF
    Hypoxia-inducible gene domain 1 (HIGD1) proteins are small integral membrane proteins, conserved from bacteria to humans, that associate with oxidative phosphorylation supercomplexes. Using yeast as a model organism, we have shown previously that its two HIGD1 proteins, Rcf1 and Rcf2, are required for the generation and maintenance of a normal membrane potential (ΔΨ) across the inner mitochondrial membrane (IMM). We postulated that the lower ΔΨ observed in the absence of the HIGD1 proteins may be due to decreased proton pumping by complex IV (CIV) or enhanced leak of protons across the IMM. Here we measured the ΔΨ generated by complex III (CIII) to discriminate between these possibilities. First, we found that the decreased ΔΨ observed in the absence of the HIGD1 proteins cannot be due to decreased proton pumping by CIV because CIII, operating alone, also exhibited a decreased ΔΨ when HIGD1 proteins were absent. Because CIII can neither lower its pumping stoichiometry nor transfer protons completely across the IMM, this result indicates that HIGD1 protein ablation enhances proton leak across the IMM. Second, we demonstrate that this proton leak occurs through CIV because ΔΨ generation by CIII is restored when CIV is removed from the cell. Third, the proton leak appeared to take place through an inactive population of CIV that accumulates when HIGD1 proteins are absent. We conclude that HIGD1 proteins in yeast prevent CIV inactivation, likely by preventing the loss of lipids bound within the Cox3 protein of CIV

    Fundamental limitations to information transfer in accelerated frames

    Get PDF
    We study communication between an inertial observer and one of two causally-disconnected counter accelerating observers. We will restrict the quantum channel considering inertial-to-accelerated bipartite classical and quantum communication over different sets of Unruh modes (single-rail or dual-rail encoding). We find that the coherent information (and therefore, the amount of entanglement that can be generated via state merging protocol) in this strongly restricted channel presents some interesting monogamy properties between the inertial and only one of the accelerated observers if we take a fixed choice of the Unruh mode used in the channel. The optimization of the controllable parameters is also studied and we find that they deviate from the values usually employed in the literature.Comment: 7 pages, 6 figure
    corecore