17 research outputs found

    2D Full-Wave Simulation of Waves in Space and Tokamak Plasmas

    Get PDF
    Simulation results using a 2D full-wave code (FW2D) for space and NSTX fusion plasmas are presented. The FW2D code solves the cold plasma wave equations using the finite element method. The wave code has been successfully applied to describe low frequency waves in planetary magnetospheres (i.e., dipole geometry) and the results include generation and propagation of externally driven ultra-low frequency waves via mode conversion at Mercury and mode coupling, refraction and reflection of internally driven field-aligned propagating left-handed electromagnetic ion cyclotron (EMIC) waves at Earth. In this paper, global structure of linearly polarized EMIC waves is examined and the result shows such resonant wave modes can be localized near the equatorial plane. We also adopt the FW2D code to tokamak geometry and examine radio frequency (RF) waves in the scape-off layer (SOL) of tokamaks. By adopting the rectangular and limiter boundary, we compare the results with existing AORSA simulations. The FW2D code results for the high harmonic fast wave heating case on NSTX with a rectangular vessel boundary shows excellent agreement with the AORSA code

    Development of slow and fast wave coupling and heating from the C-Stellarator to NSTX

    No full text
    A historical perspective on key discoveries which contributed to understanding the properties of coupling both slow and fast waves and the effects on plasma heating and current drive will be presented. Important steps made include the demonstration that the Alfven resonance was in fact a mode conversion on the C-stellarator, that toroidal m = -1 eigenmodes were excited in toroidal geometry and impurity influx caused the Z mode on the ST tokamak, that the H minority regime provided strong heating and that 3He minority could be used as well on PLT, that the 2nd harmonic majority tritium regime was viable on TFTR, and that high harmonic fast wave heating was efficient when the SOL losses were avoided on NSTX

    10th Topical Conference on RF Power in Plasmas

    No full text

    2D full-wave simulation of waves in space and tokamak plasmas

    No full text
    Simulation results using a 2D full-wave code (FW2D) for space and NSTX fusion plasmas are presented. The FW2D code solves the cold plasma wave equations using the finite element method. The wave code has been successfully applied to describe low frequency waves in planetary magnetospheres (i.e., dipole geometry) and the results include generation and propagation of externally driven ultra-low frequency waves via mode conversion at Mercury and mode coupling, refraction and reflection of internally driven field-aligned propagating left-handed electromagnetic ion cyclotron (EMIC) waves at Earth. In this paper, global structure of linearly polarized EMIC waves is examined and the result shows such resonant wave modes can be localized near the equatorial plane. We also adopt the FW2D code to tokamak geometry and examine radio frequency (RF) waves in the scape-off layer (SOL) of tokamaks. By adopting the rectangular and limiter boundary, we compare the results with existing AORSA simulations. The FW2D code results for the high harmonic fast wave heating case on NSTX with a rectangular vessel boundary shows excellent agreement with the AORSA code

    Phytochemical composition and bio-functional properties of Apis mellifera propolis from Kenya

    No full text
    There is an increased demand for natural products like propolis, yet little information is available about the chemical composition of African propolis and its bio-functional properties. Therefore, in this study, we aimed to quantify the phytochemicals and determine the antioxidant and antimicrobial properties of Apis mellifera propolis (n = 59) sourced from various regions in Kenya. Principal component analysis (PCA) showed that the sampling region had a remarkable impact on the propolis's composition and bio-functional properties. Generally, the propolis contained high amounts of phytochemicals, particularly alkaloids (5.76 g CE/100 g) and phenols (2.24 g GAE/100 g). Furthermore, analysis of propolis by gas chromatography–mass spectrometry (GC-MS) revealed various compounds with varying bio-functional activities. These compounds included triterpenoids alpha- and beta-amyrin, oleanen-3-yl-acetate, urs-12-en-24-oic acid, lanosta-8,24-dien-3-one, and hydrocarbons tricosane and nondecane, which have been reported to have either antimicrobial or antioxidant activities. The propolis samples collected from hotter climatic conditions contained a higher composition of phytochemicals, and additionally, they displayed higher antioxidant and antimicrobial activities than those obtained from cooler climatic conditions. Key findings of this study demonstrate the occurrence of relatively high phytochemical content in Kenya's propolis, which has antioxidant and antimicrobial properties; hence this potential could be harnessed for disease control
    corecore