5,200 research outputs found
Investigations in adaptive processing of multispectral data
Adaptive data processing procedures are applied to the problem of classifying objects in a scene scanned by multispectral sensor. These procedures show a performance improvement over standard nonadaptive techniques. Some sources of error in classification are identified and those correctable by adaptive processing are discussed. Experiments in adaptation of signature means by decision-directed methods are described. Some of these methods assume correlation between the trajectories of different signature means; for others this assumption is not made
Hypercomplex quantum mechanics
The fundamental axioms of the quantum theory do not explicitly identify the
algebraic structure of the linear space for which orthogonal subspaces
correspond to the propositions (equivalence classes of physical questions). The
projective geometry of the weakly modular orthocomplemented lattice of
propositions may be imbedded in a complex Hilbert space; this is the structure
which has traditionally been used. This paper reviews some work which has been
devoted to generalizing the target space of this imbedding to Hilbert modules
of a more general type. In particular, detailed discussion is given of the
simplest generalization of the complex Hilbert space, that of the quaternion
Hilbert module.Comment: Plain Tex, 11 page
Improvements in estimating proportions of objects from multispectral data
Methods for estimating proportions of objects and materials imaged within the instantaneous field of view of a multispectral sensor were developed further. Improvements in the basic proportion estimation algorithm were devised as well as improved alien object detection procedures. Also, a simplified signature set analysis scheme was introduced for determining the adequacy of signature set geometry for satisfactory proportion estimation. Averaging procedures used in conjunction with the mixtures algorithm were examined theoretically and applied to artificially generated multispectral data. A computationally simpler estimator was considered and found unsatisfactory. Experiments conducted to find a suitable procedure for setting the alien object threshold yielded little definitive result. Mixtures procedures were used on a limited amount of ERTS data to estimate wheat proportion in selected areas. Results were unsatisfactory, partly because of the ill-conditioned nature of the pure signature set
Estimating proportions of objects from multispectral scanner data
Progress is reported in developing and testing methods of estimating, from multispectral scanner data, proportions of target classes in a scene when there are a significiant number of boundary pixels. Procedures were developed to exploit: (1) prior information concerning the number of object classes normally occurring in a pixel, and (2) spectral information extracted from signals of adjoining pixels. Two algorithms, LIMMIX and nine-point mixtures, are described along with supporting processing techniques. An important by-product of the procedures, in contrast to the previous method, is that they are often appropriate when the number of spectral bands is small. Preliminary tests on LANDSAT data sets, where target classes were (1) lakes and ponds, and (2) agricultural crops were encouraging
Optical modeling of agricultural fields and rough-textured rock and mineral surfaces
Review was made of past models for describing the reflectance and/or emittance properties of agricultural/forestry and geological targets in an effort to select the best theoretical models. An extension of the six parameter Allen-Gayle-Richardson model was chosen as the agricultural plant canopy model. The model is used to predict the bidirectional reflectance of a field crop from known laboratory spectra of crop components and approximate plant geometry. The selected geological model is based on Mie theory and radiative transfer equations, and will assess the effect of textural variations of the spectral emittance of natural rock surfaces
Prevention of food poisoning in hospital patients
CITATION: Horwitz, B. M., Finlayson, M. H. & Brede, H. D. 1974. Prevention of food poisoning in hospital patients. South African Medical Journal, 48(26):1109-1111.The original publication is available at http://www.samj.org.zaBacteriological investigations of raw and cooked foods and of food handlers in abattoirs, food factories and hospital kitchens show that they are potential sources of food poisoning organisms. The use of reheated (reconstituted) frozen foods is recommended as an ideal means of preventing food poisoning among hospital patients.http://archive.samj.org.za/index.php?path=%2F1974+VOL+XLVIII+Jan-Jun%2FArticles%2F06+JunePublisher’s versio
Streptococcal pharyngitis and systemic lupus erythematosus
Click on the link to view
Towards a Realistic Equation of State of Strongly Interacting Matter
We consider a relativistic strongly interacting Bose gas. The interaction is
manifested in the off-shellness of the equilibrium distribution. The equation
of state that we obtain for such a gas has the properties of a realistic
equation of state of strongly interacting matter, i.e., at low temperature it
agrees with the one suggested by Shuryak for hadronic matter, while at high
temperature it represents the equation of state of an ideal ultrarelativistic
Stefan-Boltzmann gas, implying a phase transition to an effectively weakly
interacting phase.Comment: LaTeX, figures not include
Galilean limit of equilibrium relativistic mass distribution for indistinguishable events
The relativistic distribution for indistinguishable events is considered in
the mass-shell limit where is a given intrinsic property of
the events. The characteristic thermodynamic quantities are calculated and
subject to the zero-mass and the high-temperature limits. The results are shown
to be in agreement with the corresponding expressions of an on-mass-shell
relativistic kinetic theory. The Galilean limit which
coincides in form with the low-temperature limit, is considered. The theory is
shown to pass over to a nonrelativistic statistical mechanics of
indistinguishable particles.Comment: Report TAUP-2136-9
- …