7,506 research outputs found

    An evolutionary model for the gamma-ray system PSR J1311-3430 and its companion

    Get PDF
    The most recent member of the millisecond pulsar with very low-mass companions and short orbital periods class, PSR J1311-3430 (Pletsch et al. 2012) is a remarkable object in various senses. Besides being the first discovered in gamma-rays, its measured features include the very low or absent hydrogen content. We show in this Letter that this important piece of information leads to a very restricted range of initial periods for a given donor mass. For that purpose, we calculate in detail the evolution of the binary system self-consistently, including mass transfer and evaporation, finding the features of the new evolutionary path leading to the observed configuration. It is also important to remark that the detailed evolutionary history of the system naturally leads to a high final pulsar mass, as it seems to be demanded by observations.Comment: 5 pages, 5 figures, 1 table. Accepted for publication in MNRAS Letter

    Trends in Outcomes for Young People with Disabilities: Are We Making Progress?

    Get PDF
    This paper uses the Current Population Survey (CPS) from 1981-2000 to compare long term trends in socio-economic outcomes for youth (aged 15-21) and young adults (aged 22-29) with work limitations to those for youth and young adults without work limitations. We focus on the years 1988 and 1999: years that roughly correspond to the peaks of successive business cycles. We find that prevalence of work limitations declined for males but increased for females, mostly accounted for by growth for African American females. Despite a substantial reduction in the educational attainment gap between young adults with and without disabilities, gaps in employment, earnings, dependency on public programs and poverty widened substantially. These trends could be due to factors that determine whether individuals report themselves to be work-limited, factors that affect individual outcomes regardless of self-reported work limitation status, or both sets of factors

    Curvature energy effects on strange quark matter nucleation at finite density

    Full text link
    We consider the effects of the curvature energy term on thermal strange quark matter nucleation in dense neutron matter. Lower bounds on the temperature at which this process can take place are given and compared to those without the curvature term.Comment: PlainTex, 6 pp., IAG-USP Rep.5

    Color-flavor locked strange matter

    Full text link
    We analyze how the CFL states in dense matter work in the direction of enhancing the parameter space for absolutely stable phases (strange matter). We find that the "CFL strange matter" phase can be the true ground state of hadronic matter for a much wider range of the parameters of the model (the gap of the QCD Cooper pairs Δ\Delta, the strange quark mass msm_s and the Bag Constant BB) than the state without any pairing, and derive a full equation of state and an accurate analytic approximation to the lowest order in Δ\Delta and msm_{s} which may be directly used for applications. The effects of pairing on the equation of state are found to be small (as previously expected) but not negligible and may be relevant for astrophysics.Comment: 5 pages, 2 figure

    Strangelet spectra from type II supernovae

    Get PDF
    We study in this work the fate of strangelets injected as a contamination in the tail of a "strange matter-driven" supernova shock. A simple model for the fragmentation and braking of the strangelets when they pass through the expanding oxygen shell is presented and solved to understand the reprocessing of this component. We find that the escaping spectrum is a scaled-down version of the one injected at the base of the oxygen shell. The supernova source is likely to produce low-energy particles of A1001000A \sim 100-1000 quite independently of the initial conditions. However, it is difficult that ultrarrelativistic strangelets (such as the hypothetical Centauro primaries) can have an origin in those explosive events.Comment: RevTex file, 5 pp., no figure

    Characteristic odour in the blood reveals ovarian carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ovarian carcinoma represents about 4% of all cancers diagnosed in women worldwide. Mortality rate is high, over 50%, mainly due to late diagnosis. Currently there are no acceptable screening techniques available, although ovarian cancer belongs to the group of malignancies for which mortality could be dramatically reduced by early diagnosis.</p> <p>In a recently published study, we clearly demonstrated that human ovarian carcinoma tissues can be characterized by a specific odour, detectable by a trained dog. Another recent study confirmed these results using an electronic nose.</p> <p>Methods</p> <p>In the present work, we examined whether the cancer-specific odour can also be found in the blood. Two specially trained dogs were used. Both ovarian cancer tissues and blood from patients with ovarian carcinoma were tested.</p> <p>Results</p> <p>The tissue tests showed sensitivity of 100% and specificity of 95%, while the blood tests showed sensitivity of 100% and specificity of 98%.</p> <p>Conclusions</p> <p>The present study strongly suggests that the characteristic odour emitted by ovarian cancer samples is also present in blood (plasma) taken from patients with the disease. This finding opens possibilities for future screening of healthy populations for early diagnosis of ovarian carcinoma. A future challenge is to develop a sensitive electronic nose for screening of ovarian carcinoma by testing the blood/plasma to detect the disease at a stage early enough for treatment to be effective.</p

    Matrix Models and D-branes in Twistor String Theory

    Full text link
    We construct two matrix models from twistor string theory: one by dimensional reduction onto a rational curve and another one by introducing noncommutative coordinates on the fibres of the supertwistor space P^(3|4)->CP^1. We comment on the interpretation of our matrix models in terms of topological D-branes and relate them to a recently proposed string field theory. By extending one of the models, we can carry over all the ingredients of the super ADHM construction to a D-brane configuration in the supertwistor space P^(3|4). Eventually, we present the analogue picture for the (super) Nahm construction.Comment: 1+37 pages, reference added, JHEP style, published versio

    Disrupted Ultradian activity rhythms and Differential expression of several clock genes in interleukin-6-Deficient Mice

    Get PDF
    The characteristics of the cycles of activity and rest stand out among the most intensively investigated aspects of circadian rhythmicity in humans and experimental animals. Alterations in the circadian patterns of activity and rest are strongly linked to cognitive and emotional dysfunctions in severe mental illnesses such as Alzheimer's disease (AD) and major depression (MDD). The proinflammatory cytokine interleukin 6 (IL-6) has been prominently associated with the pathogenesis of AD and MDD. However, the potential involvement of IL-6 in the modulation of the diurnal rhythms of activity and rest has not been investigated. Here, we set out to study the role of IL-6 in circadian rhythmicity through the characterization of patterns of behavioral locomotor activity in IL-6 knockout (IL-6 KO) mice and wild-type littermate controls. Deletion of IL-6 did not alter the length of the circadian period or the amount of locomotor activity under either light-entrained or free-running conditions. IL-6 KO mice also presented a normal phase shift in response to light exposure at night. However, the temporal architecture of the behavioral rhythmicity throughout the day, as characterized by the quantity of ultradian activity bouts, was significantly impaired under light-entrained and free-running conditions in IL-6 KO. Moreover, the assessment of clock gene expression in the hippocampus, a brain region involved in AD and depression, revealed altered levels of cry1, dec2, and rev-erb-beta in IL-6 KO mice. These data propose that IL-6 participates in the regulation of ultradian activity/rest rhythmicity and clock gene expression in the mammalian brain. Furthermore, we propose IL-6-dependent circadian misalignment as a common pathogenetic principle in some neurodegenerative and neuropsychiatric disorders
    corecore