406 research outputs found

    Inhibition of glutamine metabolism accelerates resolution of acute lung injury

    Get PDF
    Despite recent advances, acute respiratory distress syndrome (ARDS) remains a severe and often fatal disease for which there is no therapy able to reduce the underlying excessive lung inflammation or enhance resolution of injury. Metabolic programming plays a critical role in regulating inflammatory responses. Due to their high metabolic needs, neutrophils, macrophages, and lymphocytes rely upon glutamine metabolism to support activation and function. Additionally, during times of physiologic stress, nearly all cells, including fibroblasts and epithelial cells, require glutamine metabolism. We hypothesized that inhibiting glutamine metabolism reduces lung inflammation and promotes resolution of acute lung injury. Lung injury was induced by instilling lipopolysaccharide (LPS) intratracheally. To inhibit glutamine metabolism, we administered a glutamine analogue, 6-diazo-5-oxo-L-norleucine (DON) that binds to glutamine-utilizing enzymes and transporters, after injury was well established. Treatment with DON led to less lung injury, fewer lung neutrophils, lung inflammatory and interstitial macrophages, and lower levels of proinflammatory cytokines and chemokines at 5 and/or 7 days after injury. Additionally, DON led to earlier expression of the growth factor amphiregulin and more rapid recovery of LPS-induced weight loss. Thus, DON reduced lung inflammation and promoted resolution of injury. These data contribute to our understanding of how glutamine metabolism regulates lung inflammation and repair, and identifies a novel target for future therapies for ARDS and other inflammatory lung diseases

    Deletion of mtorc1 activity in CD4+ T cells is associated with lung fibrosis and increased γδ T cells

    Get PDF
    Pulmonary fibrosis is a devastating, incurable disease in which chronic inflammation and dysregulated, excessive wound healing lead to progressive fibrosis, lung dysfunction, and ultimately death. Prior studies have implicated the cytokine IL-17A and Th17 cells in promoting the development of fibrosis. We hypothesized that loss of Th17 cells via CD4-specific deletion of mTORC1 activity would abrogate the development of bleomycin-induced pulmonary fibrosis. However, in actuality loss of Th17 cells led to increased mortality and fibrosis in response to bleomycin. We found that in the absence of Th17 cells, there was continued production of IL-17A by γδT cells. These IL-17A+γδT cells were associated with increased lung neutrophils and M2 macrophages, accelerated development of fibrosis, and increased mortality. These data elucidate the critical role of IL-17A+ γδT cells in promoting chronic inflammation and fibrosis, and reveal a novel therapeutic target for treatment of pulmonary fibrosis

    Hyaluronan fragments induce IFNβ via a novel TLR4-TRIF-TBK1-IRF3- dependent pathway

    Get PDF
    Background: The extracellular matrix plays a critical role in insuring tissue integrity and water homeostasis. However, breakdown products of the extracellular matrix have emerged as endogenous danger signals, designed to rapidly activate the immune system against a potential pathogen breach. Type I interferons play a critical role in the immune response against viral infections. In the lungs, hylauronan (HA) exists as a high molecular weight, biologically inert extracellular matrix component that is critical for maintaining lung function. When lung tissue is injured, HA is broken down into lower molecular weight fragments that alert the immune system to the breach in tissue integrity by activating innate immune responses. HA fragments are known to induce inflammatory gene expression via TLR-MyD88-dependent pathways. Methods. Primary peritoneal macrophages from C57BL/6 wild type, TLR4 null, TLR3 null, MyD88 null, and TRIF null mice as well as alveolar and peritoneal macrophage cell lines were stimulated with HA fragments and cytokine production was assessed by rt-PCR and ELISA. Western blot analysis for IRF3 was preformed on cell lysates from macrophages stimulate with HA fragments. Results: We demonstrate for the first time that IFNβ is induced in murine macrophages by HA fragments. We also show that HA fragments induce IFNβ using a novel pathway independent of MyD88 but dependent on TLR4 via TRIF and IRF-3. Conclusions: Overall our findings reveal a novel signaling pathway by which hyaluronan can modulate inflammation and demonstrate the ability of hyaluronan fragments to induce the expression of type I interferons in response to tissue injury even in the absence of viral infection. This is independent of the pathway of the TLR2-MyD88 used by these matrix fragments to induce inflammatory chemokines. Thus, LMW HA may be modifying the inflammatory milieu simultaneously via several pathways

    Ecotoxicity of microplastics to freshwater biota: Considering exposure and hazard across trophic levels

    Get PDF
    In contrast to marine ecosystems, the toxicity impact of microplastics in freshwater environments is poorly understood. This contribution reviews the literature on the range of effects of microplastics across and between trophic levels within the freshwater environment, including biofilms, macrophytes, phytoplankton, invertebrates, fish and amphibians. While there is supporting evidence for toxicity in some species e.g. growth reduction for photoautotrophs, increased mortality for some invertebrates, genetic changes in amphibians, and cell internalization of microplastics and nanoplastics in fish; other studies show that it is uncertain whether microplastics can have detrimental long-term impacts on ecosystems. Some taxa have yet to be studied e.g. benthic diatoms, while only 12% of publications on microplastics in freshwater, demonstrate trophic transfer in foodwebs. The fact that just 2% of publications focus on microplastics colonized by biofilms is hugely concerning given the cascading detrimental effects this could have on freshwater ecosystem function. Multiple additional stressors including environmental change (temperature rises and invasive species) and contaminants of anthropogenic origin (antibiotics, metals, pesticides and endocrine disruptors) will likely exacerbate negative interactions between microplastics and freshwater organisms, with potentially significant damaging consequences to freshwater ecosystems and foodwebs

    The Localization Transition of the Two-Dimensional Lorentz Model

    Full text link
    We investigate the dynamics of a single tracer particle performing Brownian motion in a two-dimensional course of randomly distributed hard obstacles. At a certain critical obstacle density, the motion of the tracer becomes anomalous over many decades in time, which is rationalized in terms of an underlying percolation transition of the void space. In the vicinity of this critical density the dynamics follows the anomalous one up to a crossover time scale where the motion becomes either diffusive or localized. We analyze the scaling behavior of the time-dependent diffusion coefficient D(t) including corrections to scaling. Away from the critical density, D(t) exhibits universal hydrodynamic long-time tails both in the diffusive as well as in the localized phase.Comment: 13 pages, 7 figures

    HAS-1 genetic polymorphism in sporadic abdominal aortic aneurysm

    Get PDF
    The hyaluronan synthase 1 (HAS-1) gene encodes a plasma membrane protein that synthesizes hyaluronan (HA), an extracellular matrix molecule. Accumulating evidence emphasizes the relevance of HA metabolism in an increasing number of processes of clinical interest, including abdominal aortic aneurysm (AAA). The existence of aberrant splicing variants of the HAS-1 gene could partly explain the altered extracellular matrix architecture and influence various biological functions, resulting in progressive arterial wall failure in the development of AAA. In the present study, we assessed the hypothesis that HAS-1 genetic 833A/G polymorphism could be associated with the risk of AAA by performing a case-control association study, involving AAA patients and healthy matched donors

    Genetic Risk Can Be Decreased: Quitting Smoking Decreases and Delays Lung Cancer for Smokers With High and Low CHRNA5 Risk Genotypes - A Meta-analysis.

    Get PDF
    BACKGROUND: Recent meta-analyses show that individuals with high risk variants in CHRNA5 on chromosome 15q25 are likely to develop lung cancer earlier than those with low-risk genotypes. The same high-risk genetic variants also predict nicotine dependence and delayed smoking cessation. It is unclear whether smoking cessation confers the same benefits in terms of lung cancer risk reduction for those who possess CHRNA5 risk variants versus those who do not. METHODS: Meta-analyses examined the association between smoking cessation and lung cancer risk in 15 studies of individuals with European ancestry who possessed varying rs16969968 genotypes (N=12,690 ever smokers, including 6988 cases of lung cancer and 5702 controls) in the International Lung Cancer Consortium. RESULTS: Smoking cessation (former vs. current smokers) was associated with a lower likelihood of lung cancer (OR=0.48, 95%CI=0.30-0.75, p=0.0015). Among lung cancer patients, smoking cessation was associated with a 7-year delay in median age of lung cancer diagnosis (HR=0.68, 95%CI=0.61-0.77, p=4.9∗10(-10)). The CHRNA5 rs16969968 risk genotype (AA) was associated with increased risk and earlier diagnosis for lung cancer, but the beneficial effects of smoking cessation were very similar in those with and without the risk genotype. CONCLUSION: We demonstrate that quitting smoking is highly beneficial in reducing lung cancer risks for smokers regardless of their CHRNA5 rs16969968 genetic risk status. Smokers with high-risk CHRNA5 genotypes, on average, can largely eliminate their elevated genetic risk for lung cancer by quitting smoking- cutting their risk of lung cancer in half and delaying its onset by 7years for those who develop it. These results: 1) underscore the potential value of smoking cessation for all smokers, 2) suggest that CHRNA5 rs16969968 genotype affects lung cancer diagnosis through its effects on smoking, and 3) have potential value for framing preventive interventions for those who smoke

    Standardizing nasal nitric oxide measurement as a test for primary ciliary dyskinesia

    Get PDF
    Rationale: Several studies suggest that nasal nitric oxide (nNO) measurement could be a test for primary ciliary dyskinesia (PCD), but the procedure and interpretation have not been standardized. Objectives: Touse a standard protocol formeasuringnNOtoestablishadiseasespecific cutoff value at one site, and then validate at six other sites. Methods: At the lead site, nNO was prospectively measured in individuals later confirmed to have PCD by ciliary ultrastructural defects (n = 143) or DNAH11 mutations (n = 6); and in 78 healthy and 146 disease control subjects, including individuals with asthma (n = 37), cystic fibrosis (n = 77), and chronic obstructive pulmonary disease (n = 32). A disease-specific cutoff value was determined, using generalized estimating equations (GEEs). Six other sites prospectively measured nNO in 155 consecutive individuals enrolled for evaluation for possible PCD. Measurements and Main Results: At the lead site, nNO values in PCD (mean6standard deviation, 20.7624.1 nl/min; range, 1.5-207.3 nl/min) only rarely overlapped with the nNO values of healthy control subjects (304.6 6 118.8; 125.5-867.0 nl/min), asthma (267.8 6 103.2; 125.0-589.7 nl/min), or chronic obstructive pulmonary disease (223.7 6 87.1; 109.7-449.1 nl/min); however, therewas overlapwith cystic fibrosis (134.0673.5; 15.6-386.1 nl/min). The disease-specific nNOcutoff valuewas defined at 77 nl/minute (sensitivity, 0.98; specificity, .0.999). At six other sites, this cutoff identified 70 of the 71 (98.6%) participants with confirmed PCD. Conclusions: Using a standardized protocol in multicenter studies, nNO measurement accurately identifies individuals with PCD, and supports its usefulness as a test to support the clinical diagnosis of PCD
    corecore