536 research outputs found

    The long helical jet of the Lighthouse nebula, IGR J11014-6103

    Full text link
    Jets from rotation-powered pulsars have so far only been observed in systems moving subsonically trough their ambient medium and/or embedded in their progenitor supernova remnant (SNR). Supersonic runaway pulsars are also expected to produce jets, but they have not been confirmed so far. We investigated the nature of the jet-like structure associated to the INTEGRAL source IGR J11014-6103 (the "Lighthouse nebula"). The source is a neutron star escaping its parent SNR MSH 11-61A supersonically at a velocity exceeding 1000 km/s. We observed the Lighthouse nebula and its jet-like X-ray structure through dedicated high spatial resolution observations in X-rays (Chandra) and radio band (ATCA). Our results show that the feature is a true pulsar's jet. It extends highly collimated over >11pc, displays a clear precession-like modulation, and propagates nearly perpendicular to the system direction of motion, implying that the neutron star's spin axis in IGR J11014-6103 is almost perpendicular to the direction of the kick received during the supernova explosion. Our findings suggest that jets are common to rotation-powered pulsars, and demonstrate that supernovae can impart high kick velocities to misaligned spinning neutron stars, possibly through distinct, exotic, core-collapse mechanisms.Comment: 8 pages, 6 figures, 1 table. Discussion (sec.3) expanded and typos fixed; results unchanged. Published on A&

    Teaching computer-assisted qualitative data analysis to a large cohort of undergraduate students

    Get PDF
    Qualitative research is increasingly being conducted with the support of computer-assisted qualitative data analysis software (CAQDAS), yet limited research has been conducted on integrating the teaching of CAQDAS packages within qualitative methods university courses. Existing research typically focuses on teaching NVivo to small groups of postgraduate (primarily doctoral) students and mostly take the form of reflections of the trainers. In 2011, we implemented the teaching and use of a CAQDAS package, NVivo, within a large third-year undergraduate psychology research methods unit. Sixty-seven students participated in an online survey evaluating the use of NVivo in the unit. In this paper, we present quantitative and qualitative findings related to students' perceptions of the resources provided, their confidence in using NVivo, their satisfaction with the teaching and their intentions to use CAQDAS in the future. Student evaluations were generally positive, but highlighted the need for both increased class time and greater access to the CAQDAS program outside of class time to enhance opportunities for learning

    Beyond technology: A research agenda for social sciences and humanities research on renewable energy in Europe

    Get PDF
    This article enriches the existing literature on the importance and role of the social sciences and humanities (SSH) in renewable energy sources research by providing a novel approach to instigating the future research agenda in this field. Employing a series of in-depth interviews, deliberative focus group workshops and a systematic horizon scanning process, which utilised the expert knowledge of 85 researchers from the field with diverse disciplinary backgrounds and expertise, the paper develops a set of 100 priority questions for future research within SSH scholarship on renewable energy sources. These questions were aggregated into four main directions: (i) deep transformations and connections to the broader economic system (i.e. radical ways of (re)arranging socio-technical, political and economic relations), (ii) cultural and geographical diversity (i.e. contextual cultural, historical, political and socio-economic factors influencing citizen support for energy transitions), (iii) complexifying energy governance (i.e. understanding energy systems from a systems dynamics perspective) and (iv) shifting from instrumental acceptance to value-based objectives (i.e. public support for energy transitions as a normative notion linked to trust-building and citizen engagement). While this agenda is not intended to be—and cannot be—exhaustive or exclusive, we argue that it advances the understanding of SSH research on renewable energy sources and may have important value in the prioritisation of SSH themes needed to enrich dialogues between policymakers, funding institutions and researchers. SSH scholarship should not be treated as instrumental to other research on renewable energy but as intrinsic and of the same hierarchical importance.acceptedVersio

    Discovery of a young low-mass brown dwarf transiting a fast-rotating F-type star by the Galactic Plane eXoplanet (GPX) survey

    Full text link
    We announce the discovery of GPX-1 b, a transiting brown dwarf with a mass of 19.7±1.619.7\pm 1.6 MJupM_{\mathrm{Jup}} and a radius of 1.47±0.101.47\pm0.10 RJupR_{\mathrm{Jup}}, the first sub-stellar object discovered by the Galactic Plane eXoplanet (GPX) survey. The brown dwarf transits a moderately bright (VV = 12.3 mag) fast-rotating F-type star with a projected rotational velocity vsini=40±10v\sin{ i_*}=40\pm10 km/s. We use the isochrone placement algorithm to characterize the host star, which has effective temperature 7000±2007000\pm200 K, mass 1.68±0.101.68\pm0.10 MSunM_{\mathrm{Sun}}, radius 1.56±0.101.56\pm0.10 RSunR_{\mathrm{Sun}} and approximate age 0.270.15+0.090.27_{-0.15}^{+0.09} Gyr. GPX-1 b has an orbital period of \sim1.75 d, and a transit depth of 0.90±0.030.90\pm0.03 %. We describe the GPX transit detection observations, subsequent photometric and speckle-interferometric follow-up observations, and SOPHIE spectroscopic measurements, which allowed us to establish the presence of a sub-stellar object around the host star. GPX-1 was observed at 30-min integrations by TESS in Sector 18, but the data is affected by blending with a 3.4 mag brighter star 42 arcsec away. GPX-1 b is one of about two dozen transiting brown dwarfs known to date, with a mass close to the theoretical brown dwarf/gas giant planet mass transition boundary. Since GPX-1 is a moderately bright and fast-rotating star, it can be followed-up by the means of Doppler tomography.Comment: 13 pages, 13 figures, accepted to MNRAS in May 202
    corecore