536 research outputs found
Block bond-order potential as a convergent moments-based method
The theory of a novel bond-order potential, which is based on the block
Lanczos algorithm, is presented within an orthogonal tight-binding
representation. The block scheme handles automatically the very different
character of sigma and pi bonds by introducing block elements, which produces
rapid convergence of the energies and forces within insulators, semiconductors,
metals, and molecules. The method gives the first convergent results for
vacancies in semiconductors using a moments-based method with a low number of
moments. Our use of the Lanczos basis simplifies the calculations of the band
energy and forces, which allows the application of the method to the molecular
dynamics simulations of large systems. As an illustration of this convergent
O(N) method we apply the block bond-order potential to the large scale
simulation of the deformation of a carbon nanotube.Comment: revtex, 43 pages, 11 figures, submitted to Phys. Rev.
Validity and practical utility of accelerometry for the measurement of in-hand physical activity in horses
Background:
Accelerometers are valid, practical and reliable tools for the measurement of habitual physical activity (PA). Quantification of PA in horses is desirable for use in research and clinical settings. The objective of this study was to evaluate a triaxial accelerometer for objective measurement of PA in the horse by assessment of their practical utility and validity.
Horses were recruited to establish both the optimal site of accelerometer attachment and questionnaire designed to explore owner acceptance. Validity and cut-off values were obtained by assessing PA at various gaits. Validation study- 20 horses wore the accelerometer while being filmed for 10Ā min each of rest, walking and trotting and 5 mins of canter work. Practical utility study- five horses wore accelerometers on polls and withers for 18Ā h; compliance and relative data losses were quantified.
Results:
Accelerometry output differed significantly between the four PA levels (Pā<0ā¢001) for both wither and poll placement. For withers placement, ROC analyses found optimal sensitivity and specificity at a cut-off of <47 counts per minute (cpm) for rest (sensitivity 99.5Ā %, specificity 100Ā %), 967ā2424Ā cpm for trotting (sensitivity 96.7Ā %, specificity 100Ā %) and ≥2425Ā cpm for cantering (sensitivity 96.0Ā %, specificity 97.0Ā %). Attachment at the poll resulted in optimal sensitivity and specificity at a cut-off of <707 counts per minute (cpm) for rest (sensitivity 97.5Ā %, specificity 99.6Ā %), 1546ā2609Ā cpm for trotting (sensitivity 90.33Ā %, specificity 79.25Ā %) and ≥2610Ā cpm for cantering (sensitivity 100Ā %, specificity 100Ā %) In terms of practical utility, accelerometry was well tolerated and owner acceptance high.
Conclusion:
Accelerometry data correlated well with varying levels of in-hand equine activity. The use of accelerometers is a valid method for objective measurement of controlled PA in the horse
Power dissipation in nanoscale conductors: classical, semi-classical and quantum dynamics
Modelling Joule heating is a difficult problem because of the need to introduce correct correlations between the motions of the ions and the electrons. In this paper we analyse three different models of current induced heating (a purely classical model, a fully quantum model and a hybrid model in which the electrons are treated quantum mechanically and the atoms are treated classically). We find that all three models allow for both heating and cooling processes in the presence of a current, and furthermore the purely classical and purely quantum models show remarkable agreement in the limit of high biases. However, the hybrid model in the Ehrenfest approximation tends to suppress heating. Analysis of the equations of motion reveals that this is a consequence of two things: the electrons are being treated as a continuous fluid and the atoms cannot undergo quantum fluctuations. A means for correcting this is suggested
spatial normalization and regional assessment of cord atrophy voxel based analysis of cervical cord 3d t1 weighted images
BACKGROUND AND PURPOSE: VBM is widely applied to characterize regional differences in brain volume among groups of subjects. The aim of this study was to develop and validate a method for voxelwise statistical analysis of cord volume and to test, with this method, the correlation between cord tissue loss and aging. MATERIALS AND METHODS: 3D T1-weighted scans of the spinal cord were acquired from 90 healthy subjects spanning several decades of life. Using an AS method, we outlined the cord surface and created output images reformatted with image planes perpendicular to the estimated cord centerline. Unfolded cervical cord images were coregistered into a common standard space, and smoothed cord binary masks, produced by using the cord outlines estimated by the AS approach, were used as input images for spatial statistics. RESULTS: High spatial correlation between normalized images was observed. Averaging of the normalized scans allowed the creation of a cervical cord template and of a standardized region-of-interest atlas. VBM analysis showed some significant associations between a decreased probability of cord tissue and aging. Results were robust across different smoothing levels, but the use of an anisotropic Gaussian kernel gave the optimal trade-off between spatial resolution and the requirements of the Gaussian random field theory. CONCLUSIONS: VBM analysis of the cervical cord was feasible and holds great promise for accurate localization of regional cord atrophy in several neurologic conditions
Efficient Recursion Method for Inverting Overlap Matrix
A new O(N) algorithm based on a recursion method, in which the computational
effort is proportional to the number of atoms N, is presented for calculating
the inverse of an overlap matrix which is needed in electronic structure
calculations with the the non-orthogonal localized basis set. This efficient
inverting method can be incorporated in several O(N) methods for
diagonalization of a generalized secular equation. By studying convergence
properties of the 1-norm of an error matrix for diamond and fcc Al, this method
is compared to three other O(N) methods (the divide method, Taylor expansion
method, and Hotelling's method) with regard to computational accuracy and
efficiency within the density functional theory. The test calculations show
that the new method is about one-hundred times faster than the divide method in
computational time to achieve the same convergence for both diamond and fcc Al,
while the Taylor expansion method and Hotelling's method suffer from numerical
instabilities in most cases.Comment: 17 pages and 4 figure
Inelastic quantum transport: the self-consistent Born approximation and correlated electron-ion dynamics
A dynamical method for inelastic transport simulations in nanostructures is
compared with a steady-state method based on non-equilibrium Green's functions.
A simplified form of the dynamical method produces, in the steady state in the
weak-coupling limit, effective self-energies analogous to those in the Born
Approximation due to electron-phonon coupling. The two methods are then
compared numerically on a resonant system consisting of a linear trimer weakly
embedded between metal electrodes. This system exhibits enhanced heating at
high biases and long phonon equilibration times. Despite the differences in
their formulation, the static and dynamical methods capture local
current-induced heating and inelastic corrections to the current with good
agreement over a wide range of conditions, except in the limit of very high
vibrational excitations, where differences begin to emerge.Comment: 12 pages, 7 figure
The transfer of energy between electrons and ions in solids
In this review we consider those processes in condensed matter that involve
the irreversible flow of energy between electrons and nuclei that follows from
a system being taken out of equilibrium. We survey some of the more important
experimental phenomena associated with these processes, followed by a number of
theoretical techniques for studying them. The techniques considered are those
that can be applied to systems containing many non-equivalent atoms. They
include both perturbative approaches (Fermi's Golden Rule, and non-equilibrium
Green's functions) and molecular dynamics based (the Ehrenfest approximation,
surface hopping, semi-classical gaussian wavefunction methods and correlated
electron-ion dynamics). These methods are described and characterised, with
indications of their relative merits.Comment: LaTeX with IoP style files, 43 pages, 3 figure
- ā¦