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Abstract. Modelling Joule heating is a difficult problem because of the need to
introduce correct correlations between the motions of the ions and the electrons.
In this paper we analyse three different models of current induced heating (a
purely classical model, a fully quantum model, and a hybrid model in which the
electrons are treated quantum mechanically and the atoms are treated classically).
We find that all three models allow for both heating and cooling processes in the
presence of a current, and furthermore the purely classical and purely quantum
models show remarkable agreement in the limit of high biases. However, the
hybrid model in the Ehrenfest approximation tends to suppress heating. Analysis
of the equations of motion reveals that this is a consequence of two things: the
electrons are being treated as a continuous fluid; and the atoms cannot undergo
quantum fluctuations. A means for correcting this is suggested.
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1. Introduction

Nanoscale devices are of interest both because of the novel phenomena they display
and because of the potential practical applications in very high density electronic
devices. When we consider these devices, we are often interested in electron transport
through them. There has already been substantial work carried out to understand
how steady currents flow through these devices, and what forces on the atoms these
currents induce[1, 2, 3, 4, 5, 6, 7].

While these calculations provide much useful information about the transport
properties of nanoscale devices, there are important questions that they cannot
address, notably: what is the Joule heating produced by the current? It is this
question that interests us here. To answer it we need to know how the electronic and
atomic dynamics are coupled. This coupling has been investigated widely in a number
of other contexts, such as non-radiative transitions[8] and photodissociation[9, 10, 11],
and many methods of varying complexity and ingenuity have been developed. The
range of methods is a testament to the fact that it is exceedingly difficult to obtain
good results using available computer resources, except for model problems.

The particular problem that we are interested in poses the following requirements:

(i) To have a current flowing we need open boundary conditions.
(ii) To model the heating of a device we need to consider many non-equivalent atoms

and hence many independent degrees of freedom.
(iii) To observe heating, the non-adiabatic coupling between the nuclear and electronic

subsystems is essential.

There have been two approaches recently proposed in the literature. The first one
makes use of perturbation theory to couple quantum atoms to current carrying
electrons[12, 13, 14], while the second one uses non-adiabatic molecular dynamics
to couple classical atoms to current carrying electrons[15]. These two approaches are
very different, and the purpose of this paper is to analyse and compare them, together
with a simple classical model. In the remainder of this paper we will summarise the
theory for each approach, and characterise the important results it produces. We
begin with a purely classical model which reproduces some of the qualitative features
of the other models, and has the merit of great transparency.

2. Classical model

In the first model that we consider, we treat both electrons and atoms as classical
particles. In a metallic wire a current is carried only by a small number of electrons
within a narrow energy window near the Fermi level. The remaining very much larger
number of electrons contribute to the binding of the atoms. Thus in our classical model
we represent our wire as charge neutral atoms bound to sites by springs (corresponding
to a nucleus plus the electrons that are associated with it and its bonds to neighbours),
and a low-density of independent current carrying electrons travelling down the wire.
We consider the scattering of the current carrying electrons by the atoms to be random
and instantaneous events. The fact that the events are random allows us to ignore
correlations between scattering events. The fact that the scattering is instantaneous
allows us to ignore the details of the atomic trajectories. We also assume that the
motion occurs in one dimension only. First we derive some simple analytic results.
We follow this with more detailed computer simulations.
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Figure 1. A schematic representation of the initial configuration for a classical
electron (with mass m) about to collide with a classical atom (with mass M).
The electron and atom have initial velocities v and V, respectively. The atom is
anchored by a spring, and oscillates about its equilibrium position.

2.1. Analytical Treatment

The velocities of a current carrying electron and an atom immediately before a collision
are shown in Fig. 1. By conserving kinetic energy and linear momentum, making use
of the fact that the electron is much lighter than the atom (m << M), and averaging
over all possible initial atomic velocities, of both signs, for the average change in
kinetic energy of the atom in a collision we get ∆Katom ≈ 4(m/M)(Ke − Katom).
Here, Ke = mv2/2 and Katom = M〈V 2〉/2. If we furthermore allow for the slight
difference in average collision frequency under positive and negative V , for a given
v, and multiply by the incident electron current, then for the average net power (w)
delivered to the atom we obtain

w ≈ 4 j
( m

M

)
(Ke − 2Katom) (1)

where j is the mean incident electron particle current. We see that the power is
composed of two competing terms. In the limit where the excess energy of the electrons
(the energy that can be accessed in inelastic collisions), Ke, much exceeds the average
atomic kinetic energy, Katom, the heating term dominates and we are left with

w ≈ 4 j
( m

M

)
Ke. (2)

A key feature of this result is that the net power transferred to the atom is positive.
That is, a current leads to heating. The larger the current (j), the greater the rate
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of heating. However, if we imagine smearing the discrete classical electrons out into a
continuous fluid (m → 0) with the same mass flux (jm), then Ke → 0 and the cooling
term is all that we are left with,

w ≈ 4 j
( m

M

)
(−2Katom).

We will return to these results in Section 5.

2.2. Computer Simulations

We now study the above classical model by a computer simulation. The atom attached
to the spring oscillates freely, except when undergoing instantaneous collisions with an
electron. The result of the collision is to change the velocity of the atom, the change
being calculated by conserving energy and linear momentum

∆V =
2(v − V )

(M/m) + 1

The change in velocity results in a change in amplitude of oscillation between collisions.
The velocity of the incoming electrons is kept constant (corresponding to the Fermi
velocity), but the time between collisions is varied corresponding to different currents
and rates of scattering of the electrons by the atom. It was found to be important
to introduce random variations in the times between collisions, otherwise the highly
correlated sequence of scattering events would produce cooling instead of heating.
For a particular atom, the average time between collisions (t̄c) is calculated from
t̄c = τD/Z, where τD is the relaxation time in the Drude equation for conductivity,
and Z is the average number of current carrying electrons per atom. Because the
original Drude formula (in terms of which we define our parameters) fails to take Fermi
statistics into account, we adjust the relaxation time to hold the conductivity constant
as we vary number of current carrying electrons according to τD = τ

(0)
D Z(0)/Z, where

Z(0) is the number of valence electrons per atom, and τ
(0)
D is the standard Drude

relaxation time. For our numerical simulations we use values for aluminium (Z(0) = 3,
τ

(0)
D = 8fs, M = 27amu, ω = 0.013/fs, v = 20.3Å/fs and Z/Z(0) = 0.002). The number

of carriers (Z/Z(0)) we are using is very low, leading to low rates of heating, but this
does not change the conclusions. Typical results for the variation of the kinetic energy
of one atom as a function of time are shown in Fig. 2. We see that the atom undergoes
a rise in its kinetic energy (heating) with increasing time.

For the discussion so far we have, quite correctly, treated the electrons as
discrete particles. However, it will be important to understand how the heating
behaviour changes as we move from a discrete description to a continuum one when
we come to investigate the Ehrenfest approximation. We make this transition in our
simulations by dividing each electron into a number of smaller pieces. Suppose we
divide one electron into S pieces, to maintain the same current we reduce the time
between collisions by this same factor. Referring to Fig. 2 we see that the heating
disappears rapidly as we increase the number of pieces into which the electron has
been subdivided. By the time the electron has been divided into 100 pieces we get
steady slow cooling. This is consistent with the analytic results obtained above.

We performed one further set of calculations in which the electrons are once again
sliced up into pieces, but these pieces are bunched up in space to form compressed
packets with empty space between them. This roughly corresponds to travelling
packets of fluid. From Fig. 3 we see that tight packets behave essentially the same
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Figure 2. This graph shows the variation of the kinetic energy of the atom as a
function of time. The three curves correspond to the different number of pieces
(S) into which the electron has been chopped.

as discrete particles. This is not surprising, but it tells us that highly localised
disturbances in a fluid can behave like discrete particles. We will elaborate on this in
the discussion of the Ehrenfest method.

3. Quantum Perturbation Theory

The physical model used to develop the perturbation theory expression for the
interaction of vibrating ions immersed in a sea of current carrying electrons [12, 13, 14]
is an extension of the above classical model. Initially we imagine the ions to be
immersed in the electron gas in its ground state. We then excite the electrons by
causing them to carry a current, and once this is established we study the response of
the ionic motion to this excitation of the electron gas.

First, we describe the general setup for the perturbative treatment of the
interaction between quantum vibrations and excited quantum electrons. To describe
the unperturbed state of the system we make the Born-Oppenheimer separation and
solve the adiabatic equations. The solution of these equations describes oscillatory
motion of the ions about equilibrium fixed sites. Next, we consider the excited states
of the electrons in the presence of static ions at their equilibrium sites, and place
the electrons in one such excited state. Finally, we couple the electronic and ionic
subsystems together and calculate the resultant energy transfer between them. This
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Figure 3. This graph shows the variation of the kinetic energy of the ion as a
function of time. Each curve is characterised by two quantities: the number of
pieces into which the electron has been sliced (S), and the width of the packet
(P) created from a sliced electron. The width of a packet is defined as the ratio
of the following two quantities: the time difference between the collision for the
first piece and last piece of the electron; the period of oscillation of the atom. The
case S = 1 corresponds to an intact electron.

procedure corresponds to the following partitioning of the Hamiltonian for the system:

Ĥ =
∑

I

T̂I + Ĥe(~R)

= [
∑

I

T̂I + E0(~R)− E0(~R0)] + Ĥe(~R0) +

[(Ĥe(~R)− E0(~R))− (Ĥe(~R0)− E0(~R0))]

= ĤI + Ĥe(~R0) + ĤeI (3)

where ~R represents the ionic coordinates, ~R0 represents the equilibrium fixed sites, T̂I

is the ionic kinetic energy operator for one ion and Ĥe(~R) is the electronic Hamiltonian
in the field of static ions. The ion-ion interaction is included in Ĥe(~R). E0(~R) is the
total energy for the ground state Born-Oppenheimer surface.

The initial state of the ionic subsystem is a solution of the equation

ĤI |χN 〉 = UN |χN 〉. (4)

The energies UN correspond to the phonon spectrum in the harmonic approximation.
The excited states of the electrons, in the field of static ions in their equilibrium
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positions, are solutions to the Born-Oppenheimer equation

Ĥe(~R)|Φn〉 = En(~R)|Φn〉 (5)

with ~R = ~R0.
We can now couple the two subsystems together. We expand the states of the

coupled system as a linear combination of products of the two sets of eigenstates. Let
us define 〈~r ~R|nN〉 = 〈~r|Φn〉〈~R|χN 〉. The coefficients in the expansion are found using
perturbation theory. The quantity we are interested in is the heating of the ions. The
operator corresponding to the rate of heating is [ĤI , ĤeI ]/ih̄. If the system starts in
state |nN〉, then the lowest order contribution to the expectation value of this operator
is

w =
2π

h̄

∑

n′N ′
|〈n′N ′|ĤeI |nN〉|2(UN ′−UN ) δ(En +UN −En′−UN ′)(6)

In the limit of small ionic displacements we can use a linear approximation for the
interaction Hamiltonian: ĤeI ≈ (~R− ~R0) · ~∇Ĥe(~R0). Here we have used the definition
of the fixed sites, namely ~∇E0(~R0) = 0. Matrix elements of this Hamiltonian have
the form 〈n′N ′| ~HeI |nN〉 = 〈χN ′ |~R− ~R0|χN 〉 · 〈Φn′ |~∇Ĥe(~R0)|Φn〉.

We now consider a single dynamical ion with a single vibrational degree of
freedom. If this Einstein oscillator has an angular frequency ω and a mass M , then
〈χN ′ |~R − ~R0|χN 〉 =

√
h̄/2Mω[

√
N δN ′,N−1 +

√
N + 1 δN ′,N+1], which follows from

expressing the displacement in terms of ladder operators. If we further assume that
the electronic wave functions are single Slater determinants constructed from single
particle orbitals |α〉 with eigenvalues εα and occupancies fα, and that ~∇Ĥe(~R0) =∑

i ~g(~ri), where ~ri is an electronic coordinate, we get

w =
πh̄

M

∑

αβ

fα(1− fβ) |〈β|~g|α〉|2 ×

{(N + 1)δ[εα − (εβ + h̄ω)]−Nδ[εα − (εβ − h̄ω)]}. (7)

When N = 0, w ≥ 0, which means that only ionic heating is possible. This is
necessarily true as there are no phonon excitations available to be removed to cause
ionic cooling. The physical mechanism of the heating in the limit N = 0 is spontaneous
phonon emission: even with the ions in the vibrational ground state, their zero-
point motion produces a finite electron-phonon scattering probability, which results in
inelastic decay of the excited electronic state. But this heating is also an example of
a more general feature: for a given pair of states the heating transition will be faster
than the cooling transition because N + 1 > N .

Let us now turn to the case of a current carrying nanoscale conductor. To set up
current flow, we imagine that the conductor of interest is connected to two semi-infinite
metallic electrodes, forming an open-boundary conducting system. The one-electron
states |α〉 for this system can be chosen as current carrying scattering eigenstates,
divided into two classes [7]. The states in one class, |α1〉 with energies ε1, consist of
a right-travelling wave, incident in the left electrode upon the junction, then partially
reflected back into the left electrode and partially transmitted into the right electrode,
and conversely for the other class, |α2〉 with energies ε2. We introduce the partial
density of states operators

D1(E) =
∑
1

|α1〉δ(E− ε1)〈α1| , D2(E) =
∑
2

|α2〉δ(E− ε2)〈α2|.(8)
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D1(E), D2(E) and the total density of states operator D(E) = D1(E)+D2(E), can be
expressed in terms of the Green’s function for the electrode-junction-electrode system
[13, 7].

To set up current flow we imagine that a battery of voltage W populates the
states |α1〉 and |α2〉 with occupancies f1(E) and f2(E), where f1(E) and f2(E) =
f1(E + eW ) are Fermi-Dirac distribution functions with electrochemical potentials
µ1 and µ2 = µ1 − eW , respectively [7]. For simplicity, we consider the case of zero
electronic temperature, where f1(E) and f2(E) are step functions, offset by an amount
eW .

We consider the simple scenario in which our conducting system is a one-
dimensional atomic wire, and our Einstein oscillator is one particular ion in it, with
label s and position Rs, free to execute simple harmonic vibrations along the axis
of the wire. Generalisations of the quantum perturbative treatment to systems with
multiple vibrational degrees of freedom and beyond the Einstein independent-oscillator
approximation are given in Refs. [13, 14, 16]. We adopt a single-orbital nearest-
neighbour tight-binding model. The one-electron operator g in Eq. (7) then takes the
form [13, 16]

g =
∑

s′ 6=s

(|s〉〈s′|+ |s′〉〈s|) ∂Hss′

∂Rs
(9)

where |s〉 is the tight-binding basis state at site s and Hss′ are the hopping integrals
between s and neighbouring sites s′. The derivatives ∂Hss′/∂Rs are evaluated at the
equilibrium atomic positions.

We make the following mild further approximations. We assume that electronic
properties, and the electron Green’s functions in particular, do not vary significantly
over energies of the order of h̄ω. We assume also that we are in the linear voltage
regime, where the electron Green’s functions do not vary significantly over the energy
window for conduction, between µ2 and µ1 = µ2 + eW . Then Eq. (7) for the power
into our oscillator reduces to [13]

w ≈ −2πh̄

M
U (T11+2T12+T22)+

2πh̄

M
(|eW |−h̄ω) θ(|eW |−h̄ω) T12(10)

where U = Nh̄ω is the thermal energy of the oscillator, Tij = Tr [DigDjg] for
i, j = 1, 2, and D1 and D2 are evaluated at the Fermi level, in the absence of the
current. θ is the step function defined by θ(x) = 0 for x < 0, θ(x) = 1 otherwise.
Eq. (10) includes a factor of 2 for spin degeneracy.

The appearance of the step function θ in Eq. (10) is a consequence of the
need to satisfy simultaneously the Pauli exclusion principle and energy conservation.
Processes in which an electron excites the oscillator, by generating a quantum of
vibrational energy of h̄ω, are possible only if there is an empty electronic state with
a correspondingly lower energy for the electron to go into. This requires the excess
electron energy, set by the bias W , to be larger than h̄ω, for any heating of the ion
to occur. Thus, for |eW | < h̄ω, only cooling processes are possible and w < 0. At
|eW | = h̄ω, heating processes are first switched on. Upon increasing the bias further,
the second term in Eq. (10) will begin to dominate, resulting in net heating of the ion.
This net heating is a manifestation of the overall dominance of the rate of heating
processes over the rate of cooling processes that became apparent already at the level
of Eq. (7), and is consistent also with the classical model, discussed earlier.

To make a direct comparison with that classical model, we now consider the
simplest possible case, in which our one-dimensional conductor is a perfect uniform
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linear chain, with one-electron states |α〉 that are one-dimensional Bloch waves. Then
Eq. (10) reduces to

w ≈ 2πh̄

M

1
π2

H ′2

H2
[−2U + (|eW | − h̄ω) θ(|eW | − h̄ω)] (11)

where H and H ′ are the equilibrium nearest-neighbour hopping integral and its
derivative with distance. As in Eq. (1), the power w into our ion in Eq. (11) is
made up of two competing terms. One, with a negative sign corresponding to ionic
cooling, is set by the vibrational energy of the ion (Katom in Eq. (1) and U above).
The other, corresponding to heating, is set by the excess energy of the electrons (Ke in
the classical case in Eq. (1) and eW , corrected by an amount h̄ω due to the fermionic
statistics of the electrons as discussed earlier, in Eq. (11)).

In the limit |eW | À h̄ω, |eW | À U Eq. (11) reduces to

w ≈ 2πh̄

M

1
π2

H ′2

H2
|eW | (12)

This is the analogue of Eq. (2). Let pF be the Fermi momentum of the electrons.
Setting Ke = p2

F /2m, j = eW/πh̄ (from the Landauer formula for a perfect one-
dimensional conductor) and |H ′/H| ∼ 1/a, where a is something of the order of the
interatomic distance, for the ratio of the right-hand sides of Eq. (2) and Eq. (12) we
find p2

F a2/h̄2 ∼ 1. We conclude that, in the high-bias limit, the classical and quantum
power formulae are not only in qualitative but also in approximate quantitative
agreement.

4. The Ehrenfest Approximation

The Ehrenfest approximation to the time-dependent Schrödinger equation has been
derived many times before in a variety of ways (see for example Ref. [17]). But it
is very helpful for our later discussion to derive it from a Hamiltonian that is very
similar to the one used in the previous section.

We start from Eq. (3), and begin by replacing the reference ionic coordinates with
the expectation value of the ionic coordinates R̄I = Tr{ρ̂R̂I}, where ρ̂ is the density
matrix describing the electron-ion system. For the ionic Hamiltonian ĤI we make a
quadratic expansion about the mean coordinate, and for the electron-ion interaction
we make a linear expansion. This gives us the following quantum-classical Hamiltonian

ĤQC =
∑

I

T̂I + Ĥe(R̄)−
∑

I

X̂I · F̂eI(R̄) +
1
2

∑

IJ

X̂I ·KIJ (R̄) · X̂J(13)

F̂eI(R̄) = −∂Ĥe(R̄)
∂R̄I

, KIJ(R̄) =
∂2E0(R̄)
∂R̄I∂R̄J

(14)

where X̂I = (R̂I − R̄I). This Hamiltonian would be exactly the one in Section 3 if
R̄ is independent of time. It is straightforward to derive the following Ehrenfest-like
equations from this Hamiltonian:

dR̄I

dt
=

P̄I

MI
, P̄I = Tr{ρ̂P̂I}, dP̄I

dt
= Tre{ρ̂eF̂eI(R̄)} (15)

ih̄
∂ρ̂e

∂t
= [Ĥe(R̄), ρ̂e]−

∑

I

[F̂eI(R̄), µ̂I ] (16)

ρ̂e = TrI{ρ̂}, µ̂I = TrI{X̂I ρ̂} (17)
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where MI is the mass of ion I. These would be exactly the Ehrenfest equations if
µ̂I = 0. This corresponds to the case in which the ions are unable to deviate from
the mean trajectory, and occurs in one of two limits: the mass of the ions becomes
infinite; or the second derivatives of the reference energy (KIJ(R̄)) becomes infinite.
The calculations below show the consequences of ignoring this term for the modelling
of the Joule heating of the ions. However, from the quantum perturbation formalism
(see Eq. (7)) we can make one prediction. In the limit KIJ →∞, which corresponds
to ω → ∞, all transitions are suppressed because quantum fluctuations of the ion
about its mean position are suppressed. Clearly therefore the quantum perturbation
formalism and the Ehrenfest method will generate heating and cooling by different
mechanisms.

4.1. Ehrenfest simulations of current-carrying systems using a tight-binding
electronic Hamiltonian

In principle we could evaluate the time evolution of the ionic forces directly from
Eqs. (15) and (16). However these are many body equations and thus computationally
intractable for all but the smallest systems. Since the Ehrenfest equations correspond
to electrons in the field of classical ions that create a time varying external potential
we can evaluate the electronic properties using time-dependent density functional
theory[18, 19]. (The formalism for doing this in the presence of open boundary
conditions, which are needed in order to support an electric current, has been described
elsewhere[15].) This then allows us to use the single particle density matrix. The single
particle density matrix will be represented by ρ̂

(1)
e . The relevant equations then are

ih̄
∂ρ̂

(1)
e

∂t
= [ĥKS , ρ̂(1)

e ] (18)

ĥKS = T̂ + v̂eff [ρ̂(1)
e ; R̄] (19)

~FI = − Tre{ρ̂(1)
e

~∇I ĥKS} − ~∇IEII(R̄) (20)
where ĥKS is the Kohn Sham Hamiltonian, and v̂eff [ρ̂, R̄] is the effective Kohn-Sham
potential which depends on the electron density (and hence the density matrix) and
ionic coordinates. The gradient with respect to ionic coordinates is taken at fixed
density. The ion-ion interaction is given by EII(R̄), and ~FI is the force on ion I. Note
that the trace over electronic degrees of freedom in Eq. (20) includes spin variables.

A current is generated by having a density matrix that corresponds to an excess
of electrons on one side of the system and a deficit on the other[19] (for example, the
plates of a charged capacitor). This density matrix evolves under the influence of the
Hamiltonian (Eq. (18)), which leads to a flow of electrons from the region where there
is an excess to the region where there is a deficit, producing an electric current.

For this work we consider an infinite chain of atoms, with the electronic structure
represented by a simple tight binding model with one s orbital per atom. The middle
atom has an increased on-site energy (1eV) to act as a barrier to current flow. This
atom we term the device, and is the only atom that we allow to move. The hopping
integral between neighbouring atoms is given by h(r) = h0(r0/r)2, where h0 = −1eV
and r0 = 1Å, and the repulsive term is given by φ(r) = φ0(r0/r)4 with φ0 = 0.6eV.

Results of simulations are shown in Fig.4 where the kinetic energy of the dynamic
atom is plotted as a function of time. From this plot we can see several features:
(i) As we increase the bias the system moves from undergoing cooling to undergoing

heating.
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Figure 4. The variation of kinetic energy of the dynamic atom as a function of
time for a range of applied biases. The applied bias in volts is indicated by the
style of the line (see the legend). The frequency of oscillation is ω = 8.4×1013s−1,
and hence h̄ω = 0.055eV.

(ii) After sufficiently long times the system appears to reach an equilibrium.

Qualitatively, this is clearly correct. For very low biases (eW < h̄ω = 0.055eV,
where W is the bias and ω is the frequency of oscillation of the atom) the only electronic
transitions that can be induced by the oscillating atom are excitations to higher
energies. In this case, the oscillating atom will undergo cooling. For larger biases,
electrons can make downward transitions, providing energy to the oscillating atom,
producing heating. The greater the bias, the greater the amount of heating expected,
because downward transitions should occur more quickly than upward ones[12].

However, a closer examination of the numbers shows that there are some
problems. Even with a fairly large bias of 0.75V we find cooling. With a bias
of this size (|eW | À h̄ω, |eW | À U), we would definitely expect heating (see
Eq. (12)). To understand why cooling is taking place, we need to look at the Ehrenfest
approximation in an appropriate way. From Eq. (18) we see that the electrons are
being characterised by their average charge density, and so can be thought of as a
fluid[20] responding to an external time varying classical field generated by the moving
ions. Similarly, from Eq. (20) we find that the ions are responding to the classical field
generated by this fluid of electrons (only the average charge density appears in the
force equation). So we find that the Ehrenfest equations are describing the interaction
between point like classical ions and an electron fluid. From our classical simulations
above we discovered that turning the electrons into a fluid resulted in the suppression
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of heating.
So we now have an explanation for the cooling. But this leaves us with a new

problem: why do we ever see heating? Once again the answer can be found from
the classical simulations. There we found that if we treat the electrons as a fluid,
but instead of being uniform it propagates in packets, heating is once more observed.
The tighter the packets, the closer the result to that corresponding to point like
electrons. In our Ehrenfest simulations, the oscillating atom introduces fluctuations
into the electron density. These in turn can couple to the oscillating atom, and thereby
introduce heating.

To obtain the correct heating behaviour we need to reintroduce the full expression
for the evolution of the electrons given in Eq. (16). Note that we are returning to the
many-body electron density matrix, not the single particle one used above. This is not
essential, but reducing Eq. (16) to a single particle form involves further manipulations
that add nothing to the present discussion. The second term, which is lost in the
Ehrenfest approximation, introduces correlations between individual electrons and
the ions. To understand why this is, we need to look at the structure of the moment
operator µ̂1. This is most transparent if we look at diagonal matrix elements of the
operator in a spatial representation

µ1(~r1 . . . ~rn;~r1 . . . ~rn) =
∫

d~R1 . . . d~RN (~RI − R̄I)×

ρ(~R1 . . . ~RN , ~r1 . . . ~rn; ~R1 . . . ~RN , ~r1 . . . ~rn) (21)

For a pure state these diagonal elements of the full density matrix just correspond to
the modulus squared of the wave function. Therefore, we can interpret the moment
as being the mean displacement of an ion from the average trajectory given that
the electrons have positions given by ~r1 . . . ~rn. That is, this moment has explicit
information correlating the positions of individual ions with positions of individual
electrons. This means we are no longer treating the electrons as a fluid, and thus
would expect to observe correct heating behaviour once this term is included. It also
introduces quantum fluctuations of the ions. This is currently being investigated, and
will be the subject of a future paper.

5. Noise Analysis

We may gain further insight into the microscopic origin of current-induced ionic
heating, and into the nature of the Ehrenfest approximation, by the following analysis
in terms of fluctuations[21]. Consider a single classical vibrating ion of mass M in
a one-dimensional current-carrying atomic wire between macroscopic electrodes held
under a given bias. There are two interesting types of fluctuation in this system: the
displacement of the ion from its mean position; the variation in the electron density
(for a fixed set of ionic positions) about the value determined for the steady state.

Note that, although the equations below are written down for the Ehrenfest
model, they apply equally to the classical model of Section 2. The difference is only in
how the force on the ion due to the electrons (Fe) is calculated, as we will see below.

5.1. Ehrenfest Approximation

Let R = R(t) and P = P (t) = MdR/dt be the position and momentum of the ion.
In the Ehrenfest equation of motion we can partition the force on the ion into a
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component from the electrons, and a component from the other ions
dP

dt
= F = Fe + FI (22)

where Fe = Fe(t) and FI = FI [R(t)] are the forces exerted on the ion by the
current-carrying electron gas and by all other ions, respectively. The Ehrenfest force,
F = Fe + FI , is given by equation 15. We can rewrite equation 22 in terms of
fluctuations of the electronic force about the steady state value

dP

dt
= (Fe − F0) + (FI + F0) (23)

where F0 = F0[R(t)] is the force that would be exerted on the ion by the current-
carrying electron subsystem if the ion were held rigidly at its instantaneous position
R = R(t) and the electrons were in the current-carrying steady state, corresponding
to the given voltage and the given instantaneous atomic geometry [5, 3].

Let ∆R = R−R0 be the displacement of the ion from the steady state equilibrium
position R0, and ∆F = ∆F (t) = Fe − F0 be the deviation of the force exterted by
the electrons on the ion from the steady-state force F0 = F0[R(t)]. We can then write
Eq. (23) as

M
d2∆R

dt2
= ∆F −M ω2 ∆R (24)

We have substituted FI + F0 = −Mω2∆R, which is permissible provided that in the
steady state the ion undergoes simple harmonic motion about its mean position with
angular frequency ω. We have thus recast the Ehrenfest equations in terms of the two
types of fluctuation in the system represented by ∆F and ∆R.

Equation 24 above may be integrated to give

∆R(t) = ∆R0(t)− (1/Mω)
∫ t

0

∆F (s) sin[ω(s− t)] ds

where ∆R0(t) solves d2∆R0/dt2 = −ω2 ∆R0 and describes simple harmonic motion
in the adiabatic steady state, defined by ∆F = 0. The power into the ion (w(t)) is
then given by

w(t) =
d
dt

(P 2/2M + M ω2 ∆R2/2) =
P (t)∆F (t)

M

=
P0(t)∆F (t)

M
+

1
M

∆F (t)
∫ t

0

∆F (s) cos[ω(s− t)] ds (25)

where P0(t) = Md∆R0(t)/dt.
Consider the first term in Eq. (25) given by

w0(t) =
P0(t)∆F (t)

M
(26)

It has the following physical interpretation. Suppose that we drag the ion through
the electron gas in a preset motion, described by ∆R0(t), without allowing the ion to
recoil in response to the perturbations that it excites in the gas. The quantity w0(t)
then gives the negative of the power dissipated into the electron gas. Physically, we
would expect the power dissipated into the electron gas under these conditions to be
positive (the ion is doing work on the electron gas), and thus w0(t) to be negative.
Therefore, w0(t) describes ionic cooling.
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Consider the second term in Eq. (25), given by

w1(t) =
1
M

∆F (t)
∫ t

0

∆F (s) cos[ω(s− t)] ds (27)

Its time-average is given by

〈w1〉 =
1

Mt

∫ t

0

dt′∆F (t′)
∫ t′

0

ds ∆F (s) cos[ω(s− t)]

=
1

2Mt

(∫ t

0

∆F (s) cos(ωs) ds

)2

+
1

2Mt

(∫ t

0

∆F (s) sin(ωs) ds

)2

which is strictly non-negative. We therefore see that w1 describes ionic heating.
Thus, the Ehrenfest power has the same underlying structure, with two competing

terms, as the power in the classical model of Section 2 and in the quantum model of
Section 3. However, the cooling term, w0, above is of order ∆F while the heating
term, w1, is of order ∆F 2. The force ∆F is produced by the non-adiabatic excitations
of the electrons away from the steady state induced by the ionic motion. This in turn
is a result of the coupling between the electrons and the ions. Let us characterise
the strength of this coupling by the dimensionless small parameter λ, and let the
electron gas start off from the current-carrying steady state, characterised by ∆F = 0.
Therefore, in the Ehrenfest model the cooling satisfies w0 ∝ λ, while the heating
satisfies w1 ∝ λ2. Consequently the power w = w0 + w1 is dominated by the cooling
term w0. In Section 2 we have seen that for classical particles that behave as a fluid
we expect heating to be suppressed, but not cooling. Here we have obtained the same
result, but now for a quantum fluid. Indeed, we will see below that the dominant term
w0 in the Ehrenfest power corresponds precisely to the cooling term in the classical
model, considered earlier.

5.2. Classical Approximation

We now apply the above results to the classical model of Section 2. The force Fe(t)
now is a series of delta functions corresponding to individual pointwise electron-ion
collisions. The steady state quantity F0(R), on the other hand, now is the time-average
of Fe, with the ion held rigidly at position R. Thus, we have now reintroduced a
rapidly varying term into the force on the ion. As we will see below, this allows us to
recover the heating of the ion and to rederive the analytic classical results in Section
2. To calculate the cooling term w0 for the classical model we imagine that the ion
sweeps through the jet of classical electrons in a preset motion ∆R0 without recoil.
Electron reflections are therefore treated as elastic in the rest frame of the ion. We
calculate ∆F by collecting the resultant momentum transfer, while taking account
of the difference in collision frequency depending on the direction of motion of the
ion. Substituting into Eq. (26), for the average of w0 we recover the cooling term in
Eq. (1), 〈w0〉 = 4j (m/M) (−2Katom).

Now consider the heating term w1 in Eq. (27). The force fluctuation ∆F (t) =
Fe − F0 has a temporal average of zero, with random fluctuations about this
average corresponding to the underlying statistical distribution of the arriving classical
particles that strike the ion. By a change of integration variable we may write Eq. (27)
as

w1 =
1
M

∫ 0

−t

∆F (t) ∆F (s + t) cos(ωs) ds
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For times t greater than the force–force correlation time, we may approximately write

w1 =
1
M

∫ 0

−∞
∆F (t)∆F (s + t) cos(ωs) ds

Hence,

〈w1〉 =
1

2M

∫ ∞

−∞
C(s) cos(ωs) ds , C(s) = 〈∆F (t) ∆F (s + t)〉 (28)

where the angular brackets denote ensemble averaging (which, under the assumption
or ergodicity, is equivalent to time-averaging). We see that ionic heating is set by the
Fourier component ω of the force-force correlation function. This is a statement of
the fluctuation-dissipation theorem.

Let us evaluate Eq. (28) for our classical model in the limit where the frequency of
arrival of the incident particle (equal to the inverse F −F correlation time) far exceeds
the frequency of ionic oscillations. In that limit, we may set ω = 0 in Eq. (28). We
break up time into a sequence of short intervals τ , and give the number of incident
particles, N , arriving at the ion in any one interval a Poisson distribution with a mean
〈N〉 and variance Var(N) = 〈(N − 〈N〉)2〉 = 〈N〉. The mean incident particle current
is j = 〈N〉/τ . The fluctuations in N in different time intervals are uncorrelated. Then
∆F – the fluctuation of the force, exerted by the incident particles on the ion, away
from the mean force F0 – in a time interval is ∆F = (N − 〈N〉)(2mv)/τ , to leading
order in the incident particle mass. Replacing the integral in Eq. (28) by a summation
over successive intervals then gives

〈w1〉 =
1

2M
Var(N)

(
2mv

τ

)2

τ = 4 j
( m

M

)
Ke

Indeed, this is the heating term in Eq. (1), but this time obtained as a consequence
of the fluctuation-dissipation theorem.

We may summarise the above observations as follows. The ionic heating originates
microscopically from the recoil of the ion in individual electron-ion collisions. In
kinetic terms, the heating comes from the high frequency microscopic noise in the
force exerted by the electron gas on the ion. This noise, akin to shot noise, is due
to the discrete nature of individual collisions. The Ehrenfest approximation neglects
these two factors with the result that, in the Ehrenfest model, ionic heating, under
exposure to an excited electron gas, is suppressed.

6. Conclusion

Three different models that describe the motion of ions in the presence of current
carrying electrons have been considered: a purely classical model, a fully quantum
model, and a hybrid model in which the electrons are treated as quantum particles
and the ions are treated as classical particles. All three models produce one common
result, namely that the power delivered to the ions by the electrons contains two
competing components, one producing heating and the other producing cooling. The
classical and quantum models agree about the degree of heating in the high bias limit,
while the hybrid (Ehrenfest) model displays suppressed heating. From the point of
view of the quantum model, all transitions involving quantum fluctuations of the ion
about its mean position are suppressed in the Ehrenfest approximation because of the
tight confinement of the ion to its mean position. However, fluctuations in the mean
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position are still allowed. From the point of view of the classical model the suppression
of heating is a consequence of the fact that the electrons are being treated as a smooth
fluid rather than a gas of discrete particles. We also find that we expect cooling from
a quantum fluid on the basis of a noise analysis.

There is a curious fact in the above that requires further thought. We noted
that the Ehrenfest approximation, in which the ions are highly localised and behave
classically, prevents heating by the mechanism described by the quantum perturbation
formalism (quantum fluctuation of the ions about their mean positions). At the same
time we observed that the fully classical simulations, in which both the ions and the
electrons obey classical equations of motion, produced heating in agreement with the
quantum formalism. Clearly in the classical case there are no quantum fluctuations
of the ions about their mean positions, but there are classical fluctuations. (In the
Ehrenfest method even the classical fluctuations are suppressed.) This raises the
intriguing question: what is the connection between classical fluctuations and quantum
fluctuations? We offer no answer to this question, but merely observe that these results
suggest that a natural route from quantum to classical mechanics might be through a
hidden variable method. This type of approach, based on Bohm-de Broglie dynamics,
has been considered in the context of electron scattering[22].

Finally we note that we have offered a suggestion for a scheme to reintroduce
correlations between electrons and the ions, which is currently being investigated.
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