53 research outputs found

    Wounding patterns and human performance in knife attacks: optimising the protection provided by knife-resistant body armour

    Get PDF
    Stab attacks generate high loads,1 and to defeat them, armour needs to be of a certain thickness and stiffness.2,3 Slash attacks produce much lower loads and armour designed to defeat them can be far lighter and more flexible.Methods and subjects: Phase 1: Human performance in slash attacks: 87 randomly selected students at the Royal Military College of Science were asked to make one slash attack with an instrumented blade on a vertically mounted target. No instructions on how to slash the target were given. The direction, contact forces and velocity of each attack were recorded. Phase 2: Clinical experience with edged weapon attacks: The location and severity of all penetrating injuries in patients attending the Glasgow Royal Infirmary between 1993 and 1996 were charted on anatomical figures.Results Phase 1: Two types of human slash behaviour were evident: a ‘chop and drag’ blow and a ‘sweep motion’ type of attack. ‘Chop and drag’ attacks had higher peak forces and velocities than sweep attacks. Shoulder to waist blows (diagonal) accounted for 82% of attacks, 71% of attackers used a long diagonal slash with an average cut length of 34 cm and 11% used short diagonal attacks with an average cut length of 25 cm. Only 18% of attackers slashed across the body (short horizontal); the average measured cut length of this type was 28 cm. The maximum peak force for the total sample population was 212 N; the maximum velocity was 14.88 m s−1. The 95 percentile force for the total sample population was 181 N and the velocity was 9.89 m s−1. Phase 2: 431 of the 500 patients had been wounded with edged weapons. The average number of wounds sustained by victims in knife assaults was 2.4. The distribution of wounds by frequency and severity are presented.Conclusions Anti-slash protection is required for the arms, neck, shoulders, and thighs. The clinical experience of knife-attack victims provides information on the relative vulnerabilities of different regions of the body. It is anticipated that designing a tunic-type of Police uniform that is inherently stab and slash resistant will eventually replace the current obvious and often bulky extra protective vest. Attempts at making a combined garment will need to be guided by ergonomic considerations and field testing. A similar anatomical regional risk model might also be appropriate in the design of anti-ballistic armour and combined anti-ballistic and knife-resistant armour

    Impact perforation testing of stab-resistant armour materials

    Get PDF
    This paper describes the development of a method for the investigation and comparison of materials for use in stab resistant body armour. A number of polymer composite panels of different thicknesses and construction have been tested. A dynamic test which simulated the real threat has been used and the results compared to a simpler quasi-static test that might be used in initial materials selection. The materials tested were glass-epoxy, and glass-nylon composite panels of several thicknesses between 1.8 and 5.8mm. Additional tests were also performed on similar composites containing tungsten wires. An accelerated instrumented drop-tower was used to drive a knife through composite panels and record the force resisting penetration by the knife. The final penetration of the knife through the armour into a soft backing was also measured. For comparison,a similar geometry quasi-static test was carried out on the same specimens. It was found that energy absorbtion took the form of an initial resistance to perforation and then by a resistance to further penetration. This is thought to stem from resistance to cutting ofthe panel material and gripping of the knife blade. The energy required to produce a given penetration in dynamic tests was found to be in good agreement with the penetration achieved at similar energies under quasi-static conditions. For the materials tested there was no significant difference between the penetration resistance of single or two layer systems. The penetration achieved through a panel of a given material was approximately proportional to the inverse square of the panel's thickness. The relative performance of different armour materials was assessed by plotting the energy required to penetrate a fixed distance against the areal density of the panel

    Blade Sharpness and its Effect on the Testing of Body Armours

    Get PDF
    Factors such as edge sharpness and tip sharpness have been identified by Horsfall,1 as keyvariables in the testing of stab and slash resistant armours. This paper evaluates the influenceof blade sharpness on the mechanics of penetration and its relationship with a variety ofmaterials used for body armour systems. The differences in performance between blunt andsharp blades are compared by dynamic tests using an instrumented drop tower, measuringpeak loads and energy to penetration. Variance in the initial impact forces required topenetrate body armour between blunt and sharp blades is shown. However, the total energyto penetration for both sharp and blunt knives was found to be similar for a specific bodyarmour system. Dynamic tests were also used to evaluate the effect of wear on bladeperformance by the comparison of the initial loads for puncture and depth of penetration onaramid and metallic armour systems. The effect of sharpness on the reproducibility of testresults is also investigated and discussed. Various test methods are described for themeasurement of sharpness for both stab and slash and compared. The recent development ofa new non-destructive proof test method to measure tip and edge sharpness is also described

    The study of a human head simulant's dynamic response to a blast wave

    Get PDF
    The prevalence of body armour and helmets in military forces combined with the availability of combat medical support and timely evacuation of injured soldiers has increased the survivability rates of those who have been exposed to blast. Despite this, the incidents of traumatic brain injury (TBI), as a result of primary blast, have been described as the 'ignature injury' of modern warfare. The physical interaction between a blast wave and a human head is not well understood and there is some conjecture as to whether helmets are attenuating or amplifying the blast effects on the human head. The aim of this study was to improve the understanding of the interaction of primary blasts on the human head with different attachments such as a helmet and face shield

    Evaluation of bone excision on occipital area of simulated human skull

    Get PDF
    Surgical effects of bone and soft tissue tumours, whether for biopsy or full excision have been researched from as early as the 1970’s [1]. These researches though have as main focus the biological (histological) rather the mechanical aspects of the effects [2]. With technological advances in biomedical and biomechanical modelling, a plethora of researchers have been exploring the possibilities of understanding [3] or even predicting musculoskeletal behaviour under different loading conditions [4]. This research is seeking to bridge these two different facets by looking into the mechanical effects bone tumour surgery might have to the structural rigidity of a simulated human skull

    Genetically raised serum bilirubin levels and lung cancer: a cohort study and Mendelian randomisation using UK Biobank.

    Get PDF
    BACKGROUND: Moderately raised serum bilirubin levels are associated with lower rates of lung cancer, particularly among smokers. It is not known whether these relationships reflect antioxidant properties or residual confounding. OBJECTIVE: This study aimed to investigate potential causal relationships between serum total bilirubin and lung cancer incidence using one-sample Mendelian randomisation (MR) and UK Biobank. METHODS: We instrumented serum total bilirubin level using two variants (rs887829 and rs4149056) that together explain ~40% of population-level variability and are linked to mild hereditary hyperbilirubinaemia. Lung cancer events occurring after recruitment were identified from national cancer registries. Observational and genetically instrumented incidence rate ratios (IRRs) and rate differences per 10 000 person-years (PYs) by smoking status were estimated. RESULTS: We included 377 294 participants (median bilirubin 8.1 μmol/L (IQR 6.4-10.4)) and 2002 lung cancer events in the MR analysis. Each 5 μmol/L increase in observed bilirubin levels was associated with 1.2/10 000 PY decrease (95% CI 0.7 to 1.8) in lung cancer incidence. The corresponding MR estimate was a decrease of 0.8/10 000 PY (95% CI 0.1 to 1.4). The strongest associations were in current smokers where a 5 μmol/L increase in observed bilirubin levels was associated with a decrease in lung cancer incidence of 10.2/10 000 PY (95% CI 5.5 to 15.0) and an MR estimate of 6.4/10 000 PY (95% CI 1.4 to 11.5). For heavy smokers (≥20/day), the MR estimate was an incidence decrease of 23.1/10 000 PY (95% CI 7.3 to 38.9). There was no association in never smokers and no mediation by respiratory function. CONCLUSION: Genetically raised serum bilirubin, common across human populations, may protect people exposed to high levels of smoke oxidants against lung cancers

    Sharp and blunt force trauma concealment by thermal alteration in homicides: an in-vitro experiment for methodology and protocol development in forensic anthropological analysis of burnt bones

    Get PDF
    Burning of human remains is one method used by perpetrators to conceal fatal trauma and expert opinions regarding the degree of skeletal evidence concealment are often disparate. This experiment aimed to reduce this incongruence in forensic anthropological interpretation of burned human remains and implicitly contribute to the development of research methodologies sufficiently robust to withstand forensic scrutiny in the courtroom. We have tested the influence of thermal alteration on pre-existing sharp and blunt trauma on twenty juvenile sheep radii in the laboratory using an automated impact testing system and an electric furnace. The testing conditions simulated a worst-case scenario where remains with pre-existing sharp or blunt trauma were exposed to burning with an intentional vehicular fire scenario in mind. All impact parameters as well as the burning conditions were based on those most commonly encountered in forensic cases and maintained constant throughout the experiment. The results have shown that signatures associated with sharp and blunt force trauma were not masked by heat exposure and highlights the potential for future standardization of fracture analysis in burned bone. Our results further emphasize the recommendation given by other experts on handling, processing and recording burned remains at the crime scene and mortuary

    Evaluation of bone excision effects on a human skull model - I: Mechanical testing and digital image correlation.

    Get PDF
    The mechanisms of skull impact loading may change following surgical interventions such as the removal of bone lesions, but little is known about the consequences in the event of subsequent head trauma. We, therefore, prepared acrylonitrile butadiene styrene human skull models based on clinical computed tomography skull data using a three-dimensional printer. Six replicate physical skull models were tested, three with bone excisions and three without. A drop tower was used to simulate the impact sustained by falling backwards onto the occipital lobe region. The impacts were recorded with a high-speed camera, and the occipital strain response was determined by digital image correlation. Although the hole affected neither the magnitude nor the sequence of the fracture pattern, the digital image correlation analysis highlighted an increase in strain around the excised area (0.45%–16.4% of the principal strain). Our approach provides a novel method that could improve the quality of life for patients on many fronts, including protection against trauma, surgical advice, post-operative care, advice in litigation cases, as well as facilitating general biomechanical research in the area of trauma injuries

    Experimental and numerical study of auxetic sandwich panels on 160 grams of PE4 blast loading

    Get PDF
    Mines, specifically as Anti-Tank (AT) mines are a significant threat for defence vehicles. While approaches such as v-shaped hulls are currently used to deflect the blast products from such threats, such a solution is not always usable when hull standoff is limited. As such the development of a low profile, energy absorbing solution is desirable. One approach that has potential to achieve these requirements are sandwich panels. While sandwich panel cores can be constructed from various materials, one material of particular interest are auxetics. Auxetic are materials that exhibit a negative Poisson’s ratio. This material has potential to be an efficient an impact energy absorber by increasing stiffness at local deformation by gathering mass at the impact location. This study investigates the effectiveness of novel auxetic core infills alongside three other panel types (monolithic, air gap, polymer foam sandwich) against buried charges. 160 grams of PE4 were buried in 100 mm depth and 500 mm stand off the target. Laser and High Speed Video (HSV) system were used to capture the deflection-time profile and load cell sensors were used to record the loading profile received by the panels. Experimental works were compared with numerical model. Explicit model were generated in LSDYNA software as ‘initial impulse mine’ keyword. The result found that the auxetic and foam core panels were effective in reducing peak structural loading and impulse by up to 33% and 34% respectively. Air-filled panels were the most effective to reduce the deflection of the rear of the plate, however variation between capture methods (HSV and Laser system) were reported, while numerical modelling provided comparable plate deflections responses. When normalised against panel weight, the air filled panels were experimentally the most efficient per unit mass system with the auxetics being the least effective
    • …
    corecore