70 research outputs found

    Down-regulation of the transcription factor snail in the placentas of patients with preeclampsia and in a rat model of preeclampsia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Placental malfunction in preeclampsia is believed to be a consequence of aberrant differentiation of trophoblast lineages and changes in utero-placental oxygenation. The transcription factor Snail, a master regulator molecule of epithelial-mesenchymal transition in embryonic development and in cancer, is shown to be involved in trophoblast differentiation as well. Moreover, Snail can be controlled by oxidative stress and hypoxia. Therefore, we examined the expression of Snail and its downstream target, e-cadherin, in human normal term, preterm and preeclamptic placentas, and in pregnant rats that developed preeclampsia-like symptoms in the response to a 20-fold increase in sodium intake.</p> <p>Methods</p> <p>Western blotting analysis was used for comparative expression of Snail and e- cadherin in total protein extracts. Placental cells expressing Snail and e-cadherin were identified by immunohistochemical double-labeling technique.</p> <p>Results</p> <p>The levels of Snail protein were decreased in human preeclamptic placentas by 30% (<it>p < 0.01) </it>compared to normal term, and in the rat model by 40% (<it>p < 0.001) </it>compared to control placentas. In preterm placentas, the levels of Snail expression varied, yet there was a strong trend toward statistical significance between preterm and preeclamptic placentas. In humans, e-cadherin protein level was 30% higher in preeclamptic <it>(p < 0.05) </it>placentas and similarly, but not significantly <it>(p = 0.1)</it>, high in the preterm placentas compared to normal term. In the rat model of preeclampsia, e-cadherin was increased by 60% (<it>p < 0.01)</it>. Immunohistochemical examination of human placentas demonstrated Snail-positive staining in the nuclei of the villous trophoblasts and mesenchymal cells and in the invasive trophoblasts of the decidua. In the rat placenta, the majority of Snail positive cells were spongiotrophoblasts of the junctional zone, while in the labyrinth, Snail-positive sinusoidal giant trophoblasts cells were found in some focal areas located close to the junctional zone.</p> <p>Conclusion</p> <p>We demonstrated that human preeclampsia and the salt-induced rat model of preeclampsia are associated with the reduced levels of Snail protein in placenta. Down-regulation of the transcription factor Snail in placental progenitor cell lineages, either by intrinsic defects and/or by extrinsic and maternal factors, may affect normal placenta development and function and thus contribute to the pathology of preeclampsia.</p

    Platypnea-orthodeoxia associated with a fenestrated atrial septal aneurysm: Case Report

    Get PDF
    BACKGROUND: Platypnea-orthodeoxia describes the condition of combined dyspnea and hypoxia respectively, whilst in the upright position, which improves in the recumbent position. CASE REPORT: We present a case of platypnea-orthodeoxia due to a fenestrated atrial septal defect associated with an atrial septal aneurysm. Due to the fenestrated nature of the atrial septal defect, surgical rather than percutaneous correction was performed. CONCLUSION: A high index of suspicion is required to diagnose the syndrome of platypnea-orthodeoxia. Careful echocardiographic evaluation is required to identify the syndrome, and to determine suitability for percutaneous repair

    Development of trofinetide for the treatment of Rett syndrome: from bench to bedside

    Get PDF
    Rett syndrome (RTT) is rare neurodevelopmental disorder caused by mutations in the MECP2 gene that encodes methyl-CpG-binding protein 2 (MeCP2), a DNA-binding protein with roles in epigenetic regulation of gene expression. Functional loss of MeCP2 results in abnormal neuronal maturation and plasticity, characterized by loss of verbal communication and loss of fine and gross motor function, among others. Trofinetide, a synthetic analog of glycine-proline-glutamate, was approved by the US Food and Drug Administration for the treatment of RTT in adult and pediatric patients aged 2 years and older. Here, we present the development of trofinetide from bench research to clinical studies and emphasize how the collaboration between academia, the pharmaceutical industry, and patient advocacy led to the recent approval. The bench-to-bedside development of trofinetide underscores the value of collaboration between these groups in the development and approval of treatments for rare diseases

    Americans, Marketers, and the Internet: 1999-2012

    Full text link

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    ORAL FLOWER ESSENCES FOR ADHD

    No full text
    corecore