136 research outputs found
Black hole collision with a scalar particle in four, five and seven dimensional anti-de Sitter spacetimes: ringing and radiation
In this work we compute the spectra, waveforms and total scalar energy
radiated during the radial infall of a small test particle coupled to a scalar
field into a -dimensional Schwarzschild-anti-de Sitter black hole. We focus
on and 7, extending the analysis we have done for . For small
black holes, the spectra peaks strongly at a frequency , which
is the lowest pure anti-de Sitter (AdS) mode. The waveform vanishes
exponentially as , and this exponential decay is governed
entirely by the lowest quasinormal frequency. This collision process is
interesting from the point of view of the dynamics itself in relation to the
possibility of manufacturing black holes at LHC within the brane world
scenario, and from the point of view of the AdS/CFT conjecture, since the
scalar field can represent the string theory dilaton, and 4, 5, 7 are
dimensions of interest for the AdS/CFT correspondence.Comment: 16 pages, 13 figures. Published versio
The Momentum Dependence of the Mixing Amplitude in a Hadronic Model
We calculate the momentum dependence of the mixing amplitude in
a purely hadronic model. The basic assumption of the model is that the mixing
amplitude is generated by loops and thus driven entirely by the
neutron-proton mass difference. The value of the amplitude at the
-meson point is expressed in terms of only the and the
coupling constants. Using values for these couplings constrained by
empirical two-nucleon data we obtain a value for the mixing amplitude in
agreement with experiment. Extending these results to the spacelike region, we
find a contribution to the NN interaction that is strongly
suppressed and opposite in sign relative to the conventional contribution
obtained from using the constant on-shell value for the mixing amplitude.Comment: 11 pages, SCRI-12219
Isospin-Violating Meson-Nucleon Vertices as an Alternate Mechanism of Charge-Symmetry Breaking
We compute isospin-violating meson-nucleon coupling constants and their
consequent charge-symmetry-breaking nucleon-nucleon potentials. The couplings
result from evaluating matrix elements of quark currents between nucleon states
in a nonrelativistic constituent quark model; the isospin violations arise from
the difference in the up and down constituent quark masses. We find, in
particular, that isospin violation in the omega-meson--nucleon vertex dominates
the class IV CSB potential obtained from these considerations. We evaluate the
resulting spin-singlet--triplet mixing angles, the quantities germane to the
difference of neutron and proton analyzing powers measured in elastic
scattering, and find them commensurate to those computed
originally using the on-shell value of the - mixing amplitude.
The use of the on-shell - mixing amplitude at has been
called into question; rather, the amplitude is zero in a wide class of models.
Our model possesses no contribution from - mixing at , and
we find that omega-meson exchange suffices to explain the measured
analyzing power difference~at~183 MeV.Comment: 20 pages, revtex, 3 uuencoded PostScript figure
Scalar field spacetimes and the AdS/CFT conjecture
We describe a class of asymptotically AdS scalar field spacetimes, and
calculate the associated conserved charges for three, four and five spacetime
dimensions using the conformal and counter-term prescriptions. The energy
associated with the solutions in each case is proportional to , where is a constant and is a scalar charge. In five spacetime
dimensions, the counter-term prescription gives an additional vacuum (Casimir)
energy, which agrees with that found in the context of AdS/CFT correspondence.
We find a surprising degeneracy: the energy of the ``extremal'' scalar field
solution equals the energy of pure AdS. This result is discussed in light
of the AdS/CFT conjecture.Comment: 5 pages, Latex, additional commentary on results, version to appear
in Phys. Rev.
Radiative falloff of a scalar field in a weakly curved spacetime without symmetries
We consider a massless scalar field propagating in a weakly curved spacetime
whose metric is a solution to the linearized Einstein field equations. The
spacetime is assumed to be stationary and asymptotically flat, but no other
symmetries are imposed -- the spacetime can rotate and deviate strongly from
spherical symmetry. We prove that the late-time behavior of the scalar field is
identical to what it would be in a spherically-symmetric spacetime: it decays
in time according to an inverse power-law, with a power determined by the
angular profile of the initial wave packet (Price falloff theorem). The field's
late-time dynamics is insensitive to the nonspherical aspects of the metric,
and it is governed entirely by the spacetime's total gravitational mass; other
multipole moments, and in particular the spacetime's total angular momentum, do
not enter in the description of the field's late-time behavior. This extended
formulation of Price's falloff theorem appears to be at odds with previous
studies of radiative decay in the spacetime of a Kerr black hole. We show,
however, that the contradiction is only apparent, and that it is largely an
artifact of the Boyer-Lindquist coordinates adopted in these studies.Comment: 17 pages, RevTeX
On Physical Equivalence between Nonlinear Gravity Theories
We argue that in a nonlinear gravity theory, which according to well-known
results is dynamically equivalent to a self-gravitating scalar field in General
Relativity, the true physical variables are exactly those which describe the
equivalent general-relativistic model (these variables are known as Einstein
frame). Whenever such variables cannot be defined, there are strong indications
that the original theory is unphysical. We explicitly show how to map, in the
presence of matter, the Jordan frame to the Einstein one and backwards. We
study energetics for asymptotically flat solutions. This is based on the
second-order dynamics obtained, without changing the metric, by the use of a
Helmholtz Lagrangian. We prove for a large class of these Lagrangians that the
ADM energy is positive for solutions close to flat space. The proof of this
Positive Energy Theorem relies on the existence of the Einstein frame, since in
the (Helmholtz--)Jordan frame the Dominant Energy Condition does not hold and
the field variables are unrelated to the total energy of the system.Comment: 37 pp., TO-JLL-P 3/93 Dec 199
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
A Human Minor Histocompatibility Antigen Specific for B Cell Acute Lymphoblastic Leukemia
Human minor histocompatibility antigens (mHags) play an important role in the induction of cytotoxic T lymphocyte (CTL) reactivity against leukemia after human histocompatibility leukocyte antigen (HLA)-identical allogeneic bone marrow transplantation (BMT). As most mHags are not leukemia specific but are also expressed by normal tissues, antileukemia reactivity is often associated with life-threatening graft-versus-host disease (GVHD). Here, we describe a novel mHag, HB-1, that elicits donor-derived CTL reactivity in a B cell acute lymphoblastic leukemia (B-ALL) patient treated by HLA-matched BMT. We identified the gene encoding the antigenic peptide recognized by HB-1âspecific CTLs. Interestingly, expression of the HB-1 gene was only observed in B-ALL cells and Epstein-Barr virusâtransformed B cells. The HB-1 geneâencoded peptide EEKRGSLHVW is recognized by the CTL in association with HLA-B44. Further analysis reveals that a polymorphism in the HB-1 gene generates a single amino acid exchange from His to Tyr at position 8 within this peptide. This amino acid substitution is critical for recognition by HB-1âspecific CTLs. The restricted expression of the polymorphic HB-1 Ag by B-ALL cells and the ability to generate HB-1âspecific CTLs in vitro using peptide-loaded dendritic cells offer novel opportunities to specifically target the immune system against B-ALL without the risk of evoking GVHD
The Clinical Sequencing Evidence-Generating Research Consortium: Integrating Genomic Sequencing in Diverse and Medically Underserved Populations
The Clinical Sequencing Evidence-Generating Research (CSER) consortium, now in its second funding cycle, is investigating the effectiveness of integrating genomic (exome or genome) sequencing into the clinical care of diverse and medically underserved individuals in a variety of healthcare settings and disease states. The consortium comprises a coordinating center, six funded extramural clinical projects, and an ongoing National Human Genome Research Institute (NHGRI) intramural project. Collectively, these projects aim to enroll and sequence over 6,100 participants in four years. At least 60% of participants will be of non-European ancestry or from underserved settings, with the goal of diversifying the populations that are providing an evidence base for genomic medicine. Five of the six clinical projects are enrolling pediatric patients with various phenotypes. One of these five projects is also enrolling couples whose fetus has a structural anomaly, and the sixth project is enrolling adults at risk for hereditary cancer. The ongoing NHGRI intramural project has enrolled primarily healthy adults. Goals of the consortium include assessing the clinical utility of genomic sequencing, exploring medical follow up and cascade testing of relatives, and evaluating patient-provider-laboratory level interactions that influence the use of this technology. The findings from the CSER consortium will offer patients, healthcare systems, and policymakers a clearer understanding of the opportunities and challenges of providing genomic medicine in diverse populations and settings, and contribute evidence toward developing best practices for the delivery of clinically useful and cost-effective genomic sequencing in diverse healthcare settings
- âŠ