361 research outputs found
Nernst branes from special geometry
We construct new black brane solutions in gauged
supergravity with a general cubic prepotential, which have entropy density
as and thus satisfy the Nernst Law. By using
the real formulation of special geometry, we are able to obtain analytical
solutions in closed form as functions of two parameters, the temperature
and the chemical potential . Our solutions interpolate between
hyperscaling violating Lifshitz geometries with at the
horizon and at infinity. In the zero temperature limit,
where the entropy density goes to zero, we recover the extremal Nernst branes
of Barisch et al, and the parameters of the near horizon geometry change to
.Comment: 37 pages. v2: numerical pre-factors of scalar fields q_A corrected in
Section 3. No changes to conclusions. References adde
Dark-adapted red flash ERGs in healthy adults
Purpose: The x-wave of the dark-adapted (DA) ERG to a red flash reflects DA cone function. This exploratory study of healthy adults aimed to investigate changes in the DA red ERG with flash strength and during dark adaptation to optimise visualisation and therefore quantification of the x-wave.
Methods: The effect of altering red flash strength was investigated in four subjects by recording ERGs after 20 minutes dark adaptation to red flashes (0.2–2.0 cd s m-2) using skin electrodes and natural pupils. The effect of dark adaptation duration was investigated in 16 subjects during 20 minutes in the dark, by recording DA 1.5 red ERGs at 1, 2, 3, 4, 5, 10, 15 and 20 minutes.
Results: For a dark adaption period of 20 minutes, the x-wave was more clearly visualised to weaker (< 0.6 cd s m-2) red flash strengths: to stronger flashes it became obscured by the b-wave. For red flashes of 1.5 cd s m-2, the x-wave was most prominent in ERGs recorded after 1–5 minutes of dark adaptation: with longer dark-adaptation, it was subsumed into the b-wave’s rising edge.
Conclusions: This small study suggests that x-wave visibility in healthy subjects after 20 minutes dark adaptation is improved by using flashes weaker than around 0.6 cd s m-2; for flash strengths of 1.5 cd s m-2, x-wave visibility is enhanced by recording after only around 5 minutes of dark adaptation. No evidence was found that interim red flash ERGs affecting the dark-adapted state of the normal retina
Holography of AdS vacuum bubbles
We consider the fate of AdS vacua connected by tunneling events. A precise
holographic dual of thin-walled Coleman--de Luccia bounces is proposed in terms
of Fubini instantons in an unstable CFT. This proposal is backed by several
qualitative and quantitative checks, including the precise calculation of the
instanton action appearing in evaluating the decay rate. Big crunches manifest
themselves as time dependent processes which reach the boundary of field space
in a finite time. The infinite energy difference involved is identified on the
boundary and highlights the ill-defined nature of the bulk setup. We propose a
qualitative scenario in which the crunch is resolved by stabilizing the CFT, so
that all attempts at crunching always end up shielded from the boundary by the
formation of black hole horizons. In all these well defined bulk processes the
configurations have the same asymptotics and are finite energy excitations.Comment: version submitted to journal. Note added referring to previous work
on holographic instantons
Nernst branes in gauged supergravity
We study static black brane solutions in the context of N = 2 U(1) gauged
supergravity in four dimensions. Using the formalism of first-order flow
equations, we construct novel extremal black brane solutions including examples
of Nernst branes, i.e. extremal black brane solutions with vanishing entropy
density. We also discuss a class of non-extremal generalizations which is
captured by the first-order formalism.Comment: 44 pages, 3 figures, v2: added appendix B and references, minor
typographic changes, v3: added some clarifying remarks, version published in
JHE
Stationary Black Holes: Uniqueness and Beyond
The spectrum of known black-hole solutions to the stationary Einstein
equations has been steadily increasing, sometimes in unexpected ways. In
particular, it has turned out that not all black-hole-equilibrium
configurations are characterized by their mass, angular momentum and global
charges. Moreover, the high degree of symmetry displayed by vacuum and
electro-vacuum black-hole spacetimes ceases to exist in self-gravitating
non-linear field theories. This text aims to review some developments in the
subject and to discuss them in light of the uniqueness theorem for the
Einstein-Maxwell system.Comment: Major update of the original version by Markus Heusler from 1998.
Piotr T. Chru\'sciel and Jo\~ao Lopes Costa succeeded to this review's
authorship. Significantly restructured and updated all sections; changes are
too numerous to be usefully described here. The number of references
increased from 186 to 32
Critical Trapped Surfaces Formation in the Collision of Ultrarelativistic Charges in (A)dS
We study the formation of marginally trapped surfaces in the head-on
collision of two ultrarelativistic charges in space-time. The metric of
ultrarelativistic charged particles in is obtained by boosting
Reissner-Nordstr\"om space-time to the speed of light. We show that
formation of trapped surfaces on the past light cone is only possible when
charge is below certain critical - situation similar to the collision of two
ultrarelativistic charges in Minkowski space-time. This critical value depends
on the energy of colliding particles and the value of a cosmological constant.
There is richer structure of critical domains in case. In this case
already for chargeless particles there is a critical value of the cosmological
constant only below which trapped surfaces formation is possible. Appearance of
arbitrary small nonzero charge significantly changes the physical picture.
Critical effect which has been observed in the neutral case does not take place
more. If the value of the charge is not very large solution to the equation on
trapped surface exists for any values of cosmological radius and energy density
of shock waves. Increasing of the charge leads to decrease of the trapped
surface area, and at some critical point the formation of trapped surfaces of
the type mentioned above becomes impossible.Comment: 30 pages, Latex, 7 figures, Refs. added and typos correcte
Strongly magnetized pulsars: explosive events and evolution
Well before the radio discovery of pulsars offered the first observational
confirmation for their existence (Hewish et al., 1968), it had been suggested
that neutron stars might be endowed with very strong magnetic fields of
-G (Hoyle et al., 1964; Pacini, 1967). It is because of their
magnetic fields that these otherwise small ed inert, cooling dead stars emit
radio pulses and shine in various part of the electromagnetic spectrum. But the
presence of a strong magnetic field has more subtle and sometimes dramatic
consequences: In the last decades of observations indeed, evidence mounted that
it is likely the magnetic field that makes of an isolated neutron star what it
is among the different observational manifestations in which they come. The
contribution of the magnetic field to the energy budget of the neutron star can
be comparable or even exceed the available kinetic energy. The most magnetised
neutron stars in particular, the magnetars, exhibit an amazing assortment of
explosive events, underlining the importance of their magnetic field in their
lives. In this chapter we review the recent observational and theoretical
achievements, which not only confirmed the importance of the magnetic field in
the evolution of neutron stars, but also provide a promising unification scheme
for the different observational manifestations in which they appear. We focus
on the role of their magnetic field as an energy source behind their persistent
emission, but also its critical role in explosive events.Comment: Review commissioned for publication in the White Book of
"NewCompStar" European COST Action MP1304, 43 pages, 8 figure
Physics of Neutron Star Crusts
The physics of neutron star crusts is vast, involving many different research
fields, from nuclear and condensed matter physics to general relativity. This
review summarizes the progress, which has been achieved over the last few
years, in modeling neutron star crusts, both at the microscopic and macroscopic
levels. The confrontation of these theoretical models with observations is also
briefly discussed.Comment: 182 pages, published version available at
<http://www.livingreviews.org/lrr-2008-10
Ovarian cancer
Ovarian cancer is not a single disease and can be subdivided into at least five different histological subtypes that have different identifiable risk factors, cells of origin, molecular compositions, clinical features and treatments. Ovarian cancer is a global problem, is typically diagnosed at a late stage and has no effective screening strategy. Standard treatments for newly diagnosed cancer consist of cytoreductive surgery and platinum-based chemotherapy. In recurrent cancer, chemotherapy, anti-angiogenic agents and poly(ADP-ribose) polymerase inhibitors are used, and immunological therapies are currently being tested. High-grade serous carcinoma (HGSC) is the most commonly diagnosed form of ovarian cancer and at diagnosis is typically very responsive to platinum-based chemotherapy. However, in addition to the other histologies, HGSCs frequently relapse and become increasingly resistant to chemotherapy. Consequently, understanding the mechanisms underlying platinum resistance and finding ways to overcome them are active areas of study in ovarian cancer. Substantial progress has been made in identifying genes that are associated with a high risk of ovarian cancer (such as BRCA1 and BRCA2), as well as a precursor lesion of HGSC called serous tubal intraepithelial carcinoma, which holds promise for identifying individuals at high risk of developing the disease and for developing prevention strategies
Effects of standard training in the use of closed-circuit televisions in visually impaired adults: design of a training protocol and a randomized controlled trial
<p>Abstract</p> <p>Background</p> <p>Reading problems are frequently reported by visually impaired persons. A closed-circuit television (CCTV) can be helpful to maintain reading ability, however, it is difficult to learn how to use this device. In the Netherlands, an evidence-based rehabilitation program in the use of CCTVs was lacking. Therefore, a standard training protocol needed to be developed and tested in a randomized controlled trial (RCT) to provide an evidence-based training program in the use of this device.</p> <p>Methods/Design</p> <p>To develop a standard training program, information was collected by studying literature, observing training in the use of CCTVs, discussing the content of the training program with professionals and organizing focus and discussion groups. The effectiveness of the program was evaluated in an RCT, to obtain an evidence-based training program. Dutch patients (n = 122) were randomized into a treatment group: normal instructions from the supplier combined with training in the use of CCTVs, or into a control group: instructions from the supplier only. The effect of the training program was evaluated in terms of: change in reading ability (reading speed and reading comprehension), patients' skills to operate the CCTV, perceived (vision-related) quality of life and tasks performed in daily living.</p> <p>Discussion</p> <p>The development of the CCTV training protocol and the design of the RCT in the present study may serve as an example to obtain an evidence-based training program. The training program was adjusted to the needs and learning abilities of individual patients, however, for scientific reasons it might have been preferable to standardize the protocol further, in order to gain more comparable results.</p> <p>Trial registration</p> <p><url>http://www.trialregister.nl</url>, identifier: NTR1031</p
- …
