200 research outputs found

    Artificial intelligence issues related to automated computing operations

    Get PDF
    Large data processing installations represent target systems for effective applications of artificial intelligence (AI) constructs. The system organization of a large data processing facility at the NASA Marshall Space Flight Center is presented. The methodology and the issues which are related to AI application to automated operations within a large-scale computing facility are described. Problems to be addressed and initial goals are outlined

    Optimization of large matrix calculations for execution on the Cray X-MP vector supercomputer

    Get PDF
    A considerable volume of large computational computer codes were developed for NASA over the past twenty-five years. This code represents algorithms developed for machines of earlier generation. With the emergence of the vector supercomputer as a viable, commercially available machine, an opportunity exists to evaluate optimization strategies to improve the efficiency of existing software. This result is primarily due to architectural differences in the latest generation of large-scale machines and the earlier, mostly uniprocessor, machines. A sofware package being used by NASA to perform computations on large matrices is described, and a strategy for conversion to the Cray X-MP vector supercomputer is also described

    W-Algebras of Negative Rank

    Full text link
    Recently it has been discovered that the W-algebras (orbifold of) WD_n can be defined even for negative integers n by an analytic continuation of their coupling constants. In this letter we shall argue that also the algebras WA_{-n-1} can be defined and are finitely generated. In addition, we show that a surprising connection exists between already known W-algebras, for example between the CP(k)-models and the U(1)-cosets of the generalized Polyakov-Bershadsky-algebras.Comment: 12 papes, Latex, preprint DFTT-40/9

    Space Ultrareliable Modular Computer (SUMC) instruction simulator

    Get PDF
    Simulator has been constructed as set of quasi-independent modules, regulated by one control module. All machine-dependent functions have been resolved such that simulation package is as machine independent as possible

    Classification of Structure Constants for W-algebras from Highest Weights

    Full text link
    We show that the structure constants of W-algebras can be grouped according to the lowest (bosonic) spin(s) of the algebra. The structure constants in each group are described by a unique formula, depending on a functional parameter h(c) that is characteristic for each algebra. As examples we give the structure constants C_{33}^4 and C_{44}^4 for the algebras of type W(2,3,4,...) (that include the WA_{n-1}-algebras) and the structure constant C_{44}^4 for the algebras of type W(2,4,...), especially for all the algebras WD_n, WB(0,n), WB_n and WC_n. It also includes the bosonic projection of the super-Virasoro algebra and a yet unexplained algebra of type W(2,4,6) found previously.Comment: 18 pages (A4), LaTeX, DFTT-40/9

    W-algebras with set of primary fields of dimensions (3, 4, 5) and (3,4,5,6)

    Full text link
    We show that that the Jacobi-identities for a W-algebra with primary fields of dimensions 3, 4 and 5 allow two different solutions. The first solution can be identified with WA_4. The second is special in the sense that, even though associative for general value of the central charge, null-fields appear that violate some of the Jacobi-identities, a fact that is usually linked to exceptional W-algebras. In contrast we find for the algebra that has an additional spin 6 field only the solution WA_5.Comment: 17 pages, LaTeX, KCL-TH-92-9, DFFT-70/9

    Commuting quantities and exceptional W-algebras

    Full text link
    Sets of commuting charges constructed from the current of a U(1) Kac-Moody algebra are found. There exists a set S_n of such charges for each positive integer n > 1; the corresponding value of the central charge in the Feigin-Fuchs realization of the stress tensor is c = 13-6n-6/n. The charges in each series can be written in terms of the generators of an exceptional W-algebra.Comment: 27 pages, KCL-TH-92-

    Triality in Minimal Model Holography

    Full text link
    The non-linear W_{\infty}[\mu] symmetry algebra underlies the duality between the W_N minimal model CFTs and the hs[\mu] higher spin theory on AdS_3. It is shown how the structure of this symmetry algebra at the quantum level, i.e. for finite central charge, can be determined completely. The resulting algebra exhibits an exact equivalence (a`triality') between three (generically) distinct values of the parameter \mu. This explains, among other things, the agreement of symmetries between the W_N minimal models and the bulk higher spin theory. We also study the consequences of this triality for some of the simplest W_{\infty}[\mu] representations, thereby clarifying the analytic continuation between the`light states' of the minimal models and conical defect solutions in the bulk. These considerations also lead us to propose that one of the two scalar fields in the bulk actually has a non-perturbative origin.Comment: 29 pages; v2. Typos correcte

    Coset Realization of Unifying W-Algebras

    Full text link
    We construct several quantum coset W-algebras, e.g. sl(2,R)/U(1) and sl(2,R)+sl(2,R) / sl(2,R), and argue that they are finitely nonfreely generated. Furthermore, we discuss in detail their role as unifying W-algebras of Casimir W-algebras. We show that it is possible to give coset realizations of various types of unifying W-algebras, e.g. the diagonal cosets based on the symplectic Lie algebras sp(2n) realize the unifying W-algebras which have previously been introduced as `WD_{-n}'. In addition, minimal models of WD_{-n} are studied. The coset realizations provide a generalization of level-rank-duality of dual coset pairs. As further examples of finitely nonfreely generated quantum W-algebras we discuss orbifolding of W-algebras which on the quantum level has different properties than in the classical case. We demonstrate in some examples that the classical limit according to Bowcock and Watts of these nonfreely finitely generated quantum W-algebras probably yields infinitely nonfreely generated classical W-algebras.Comment: 60 pages (plain TeX) (final version to appear in Int. J. Mod. Phys. A; several minor improvements and corrections - for details see beginning of file
    corecore