6 research outputs found

    Wave breaking turbulence at the offshore front of the Columbia River Plume

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geophysical Research Letters 41 (2014): 8987–8993, doi:10.1002/2014GL062274.Observations at the Columbia River plume show that wave breaking is an important source of turbulence at the offshore front, which may contribute to plume mixing. The lateral gradient of current associated with the plume front is sufficient to block (and break) shorter waves. The intense whitecapping that then occurs at the front is a significant source of turbulence, which diffuses downward from the surface according to a scaling determined by the wave height and the gradient of wave energy flux. This process is distinct from the shear-driven mixing that occurs at the interface of river water and ocean water. Observations with and without short waves are examined, especially in two cases in which the background conditions (i.e., tidal flows and river discharge) are otherwise identical.This work was supported by the Office of Naval Research, as part of the Data Assimilation and Remote Sensing for Littoral Applications (DARLA) project and in coordination with the Rivers and Inlets (RIVET) program

    Viral and microbial community dynamics in four aquatic environments

    No full text
    The species composition and metabolic potential of microbial and viral communities are predictable and stable for most ecosystems. This apparent stability contradicts theoretical models as well as the viral–microbial dynamics observed in simple ecosystems, both of which show Kill-the-Winner behavior causing cycling of the dominant taxa. Microbial and viral metagenomes were obtained from four human-controlled aquatic environments at various time points separated by one day to \u3e1 year. These environments were maintained within narrow geochemical bounds and had characteristic species composition and metabolic potentials at all time points. However, underlying this stability were rapid changes at the fine-grained level of viral genotypes and microbial strains. These results suggest a model wherein functionally redundant microbial and viral taxa are cycling at the level of viral genotypes and virus-sensitive microbial strains. Microbial taxa, viral taxa, and metabolic function persist over time in stable ecosystems and both communities fluctuate in a Kill-the-Winner manner at the level of viral genotypes and microbial strains
    corecore