4,683 research outputs found

    Decoding sequential vs non-sequential two-photon double ionization of helium using nuclear recoil

    Get PDF
    Above 54.4 eV, two-photon double ionization of helium is dominated by a sequential absorption process, producing characteristic behavior in the single and triple differential cross sections. We show that the signature of this process is visible in the nuclear recoil cross section, integrated over all energy sharings of the ejected electrons, even below the threshold for the sequential process. Since nuclear recoil momentum imaging does not require coincident photoelectron measurement, the predicted images present a viable target for future experiments with new short-pulse VUV and soft X-ray sources.Comment: 4 pages, 3 figure

    A New Kinematic Distance Estimator to the LMC

    Get PDF
    The distance to the Large Magellanic Cloud (LMC) can be directly determined by measuring three of its properties, its radial-velocity field, its mean proper motion, and the position angle \phi_ph of its photometric line of nodes. Statistical errors of 2% are feasible based on proper motions obtained with any of several proposed astrometry satellites, the first possibility being the Full-Sky Astrometric Mapping Explorer (FAME). The largest source of systematic error is likely to be in the determination of \phi_ph. I suggest two independent methods to measure \phi_ph, one based on counts of clump giants and the other on photometry of clump giants. I briefly discuss a variety of methods to test for other sources of systematic errors.Comment: submitted to ApJ, 13 page

    Dynamics of Learning with Restricted Training Sets I: General Theory

    Get PDF
    We study the dynamics of supervised learning in layered neural networks, in the regime where the size pp of the training set is proportional to the number NN of inputs. Here the local fields are no longer described by Gaussian probability distributions and the learning dynamics is of a spin-glass nature, with the composition of the training set playing the role of quenched disorder. We show how dynamical replica theory can be used to predict the evolution of macroscopic observables, including the two relevant performance measures (training error and generalization error), incorporating the old formalism developed for complete training sets in the limit α=p/N\alpha=p/N\to\infty as a special case. For simplicity we restrict ourselves in this paper to single-layer networks and realizable tasks.Comment: 39 pages, LaTe

    On-Line Learning with Restricted Training Sets: An Exactly Solvable Case

    Full text link
    We solve the dynamics of on-line Hebbian learning in large perceptrons exactly, for the regime where the size of the training set scales linearly with the number of inputs. We consider both noiseless and noisy teachers. Our calculation cannot be extended to non-Hebbian rules, but the solution provides a convenient and welcome benchmark with which to test more general and advanced theories for solving the dynamics of learning with restricted training sets.Comment: 19 pages, eps figures included, uses epsfig macr

    Winds of Planet Hosting Stars

    Get PDF
    The field of exoplanetary science is one of the most rapidly growing areas of astrophysical research. As more planets are discovered around other stars, new techniques have been developed that have allowed astronomers to begin to characterise them. Two of the most important factors in understanding the evolution of these planets, and potentially determining whether they are habitable, are the behaviour of the winds of the host star and the way in which they interact with the planet. The purpose of this project is to reconstruct the magnetic fields of planet hosting stars from spectropolarimetric observations, and to use these magnetic field maps to inform simulations of the stellar winds in those systems using the Block Adaptive Tree Solar-wind Roe Upwind Scheme (BATS-R-US) code. The BATS-R-US code was originally written to investigate the behaviour of the Solar wind, and so has been altered to be used in the context of other stellar systems. These simulations will give information about the velocity, pressure and density of the wind outward from the host star. They will also allow us to determine what influence the winds will have on the space weather environment of the planet. This paper presents the preliminary results of these simulations for the star τ\tau Bo\"otis, using a newly reconstructed magnetic field map based on previously published observations. These simulations show interesting structures in the wind velocity around the star, consistent with the complex topology of its magnetic field.Comment: 8 pages, 2 figures, accepted for publication in the peer-reviewed proceedings of the 14th Australian Space Research Conference, held at the University of South Australia, 29th September - 1st October 201

    Calcium oxalate crystal macropatterns in leaves of species from groups Glycine and Shuteria (Glycininae; Phaseoleae; Papilionoideae; Fabaceae)

    Get PDF
    Calcium oxalate crystal macropatterns in leaves were characterized for 69 species (and two Glycine tomentella cytotypes) from 14 of 16 genera in two legume groups, Glycine and Shuteria, to determine whether they share a common macropattern. A leaf clearing method was used to visualize the crystals. All 69 species (and two Glycine tomentella cytotypes) displayed prismatic crystals associated with leaf veins and vein endings. In contrast, mesophyll crystals occurred in 76.8% of 69 species and two G. tomentella cytotypes, and varied from a few to many. Conversely, only 40.9% of 22 Glycine species (in group Glycine) lacked mesophyll crystals, while 8.7% of 23 species of six genera associated with Glycine (in group Glycine) lacked mesophyll crystals. Thus 24.4% of 45 species of seven combined genera in group Glycine lacked mesophyll crystals. With seven genera in group Shuteria, 20.8% of 24 species lacked mesophyll crystals. The consistently present vein crystals varied in size and shape, so their length–width (Stubby versus Long) crystal ratios were determined for primary, secondary, and tertiary veins, and vein endings. Two trends were evident: Long-crystal ratios increased from primary veins to vein endings in species in both groups, and the perennial and annual Glycine species showed this condition to a greater extent than all the non-Glycine species. In some cases, taxonomically closely associated species were quite similar in their macropattern and presence or absence of mesophyll crystals. These results should be of value to future studies dealing with taxonomy and phylogeny of species in these two leguminous groups

    The WARPS Survey. VIII. Evolution of the Galaxy Cluster X-ray Luminosity Function

    Full text link
    We present measurements of the galaxy cluster X-ray Luminosity Function (XLF) from the Wide Angle ROSAT Pointed Survey (WARPS) and quantify its evolution. WARPS is a serendipitous survey of the central region of ROSAT pointed observations and was carried out in two phases (WARPS-I and WARPS-II). The results here are based on a final sample of 124 clusters, complete above a flux limit of 6.5 10E-15 erg/s/cm2, with members out to redshift z ~ 1.05, and a sky coverage of 70.9 deg2. We find significant evidence for negative evolution of the XLF, which complements the majority of X-ray cluster surveys. To quantify the suggested evolution, we perform a maximum likelihood analysis and conclude that the evolution is driven by a decreasing number density of high luminosity clusters with redshift, while the bulk of the cluster population remains nearly unchanged out to redshift z ~ 1.1, as expected in a low density Universe. The results are found to be insensitive to a variety of sources of systematic uncertainty that affect the measurement of the XLF and determination of the survey selection function. We perform a Bayesian analysis of the XLF to fully account for uncertainties in the local XLF on the measured evolution, and find that the detected evolution remains significant at the 95% level. We observe a significant excess of clusters in the WARPS at 0.1 < z < 0.3 and LX ~ 2 10E42 erg/s compared with the reference low-redshift XLF, or our Bayesian fit to the WARPS data. We find that the excess cannot be explained by sample variance, or Eddington bias, and is unlikely to be due to problems with the survey selection function.Comment: 13 pages, 12 figures, accepted for publication in MNRA

    Understanding Super-Earths with MINERVA-Australis at USQ's Mount Kent Observatory

    Get PDF
    Super Earths, planets between 5-10 Earth masses, are the most common type of exoplanet known, yet are completely absent from our Solar system. As a result, their detailed properties, compositions, and formation mechanisms are poorly understood. NASA's Transiting Exoplanet Survey Satellite (TESS) will identify hundreds of Super-Earths orbiting bright stars, for the first time allowing in-depth characterisation of these planets. At the University of Southern Queensland, we are host to the MINERVA-Australis project, dedicated wholly to the follow-up characterisation and mass measurement of TESS planets. We give an update on the status of MINERVA-Australis and our expected performance.Comment: Accepted to appear in the peer-reviewed proceedings of the 17th Australian Space Research Conference, held at the University of Sydney, 13th-15th November, 201

    Widespread Increases in Malondialdehyde Immunoreactivity in Dopamine-Rich and Dopamine-Poor Regions of Rat Brain Following Multiple, High Doses of Methamphetamine

    Get PDF
    Treatment with multiple high doses of methamphetamine (METH) can induce oxidative damage, including dopamine (DA)-mediated reactive oxygen species (ROS) formation, which may contribute to the neurotoxic damage of monoamine neurons and long-term depletion of DA in the caudate putamen (CPu) and substantia nigra pars compacta (SNpc). Malondialdehyde (MDA), a product of lipid peroxidation by ROS, is commonly used as a marker of oxidative damage and treatment with multiple high doses of METH increases MDA reactivity in the CPu of humans and experimental animals. Recent data indicate that MDA itself may contribute to the destruction of DA neurons, as MDA causes the accumulation of toxic intermediates of DA metabolism via its chemical modification of the enzymes necessary for the breakdown of DA. However, it has been shown that in human METH abusers there is also increased MDA reactivity in the frontal cortex, which receives relatively fewer DA afferents than the CPu. These data suggest that METH may induce neuronal damage regardless of the regional density of DA or origin of DA input. The goal of the current study was to examine the modification of proteins by MDA in the DA-rich nigrostriatal and mesoaccumbal systems, as well as the less DA-dense cortex and hippocampus following a neurotoxic regimen of METH treatment. Animals were treated with METH (10 mg/kg) every 2 h for 6 h, sacrificed 1 week later, and examined using immunocytochemistry for changes in MDA-adducted proteins. Multiple, high doses of METH significantly increased MDA immunoreactivity (MDA-ir) in the CPu, SNpc, cortex, and hippocampus. Multiple METH administration also increased MDA-ir in the ventral tegmental area and nucleus accumbens. Our data indicate that multiple METH treatment can induce persistent and widespread neuronal damage that may not necessarily be limited to the nigrostriatal DA system
    corecore