96 research outputs found

    A randomised clinical trial on cardiotocography plus fetal blood sampling versus cardiotocography plus ST-analysis of the fetal electrocardiogram (STAN®) for intrapartum monitoring

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiotocography (CTG) is worldwide the method for fetal surveillance during labour. However, CTG alone shows many false positive test results and without fetal blood sampling (FBS), it results in an increase in operative deliveries without improvement of fetal outcome. FBS requires additional expertise, is invasive and has often to be repeated during labour. Two clinical trials have shown that a combination of CTG and ST-analysis of the fetal electrocardiogram (ECG) reduces the rates of metabolic acidosis and instrumental delivery. However, in both trials FBS was still performed in the ST-analysis arm, and it is therefore still unknown if the observed results were indeed due to the ST-analysis or to the use of FBS in combination with ST-analysis.</p> <p>Methods/Design</p> <p>We aim to evaluate the effectiveness of non-invasive monitoring (CTG + ST-analysis) as compared to normal care (CTG + FBS), in a multicentre randomised clinical trial setting. Secondary aims are: 1) to judge whether ST-analysis of fetal electrocardiogram can significantly decrease frequency of performance of FBS or even replace it; 2) perform a cost analysis to establish the economic impact of the two treatment options.</p> <p>Women in labour with a gestational age ≥ 36 weeks and an indication for CTG-monitoring can be included in the trial.</p> <p>Eligible women will be randomised for fetal surveillance with CTG and, if necessary, FBS or CTG combined with ST-analysis of the fetal ECG.</p> <p>The primary outcome of the study is the incidence of serious metabolic acidosis (defined as pH < 7.05 and Bd<sub>ecf </sub>> 12 mmol/L in the umbilical cord artery). Secondary outcome measures are: instrumental delivery, neonatal outcome (Apgar score, admission to a neonatal ward), incidence of performance of FBS in both arms and cost-effectiveness of both monitoring strategies across hospitals.</p> <p>The analysis will follow the intention to treat principle. The incidence of metabolic acidosis will be compared across both groups. Assuming a reduction of metabolic acidosis from 3.5% to 2.1 %, using a two-sided test with an alpha of 0.05 and a power of 0.80, in favour of CTG plus ST-analysis, about 5100 women have to be randomised. Furthermore, the cost-effectiveness of CTG and ST-analysis as compared to CTG and FBS will be studied.</p> <p>Discussion</p> <p>This study will provide data about the use of intrapartum ST-analysis with a strict protocol for performance of FBS to limit its incidence. We aim to clarify to what extent intrapartum ST-analysis can be used without the performance of FBS and in which cases FBS is still needed.</p> <p>Trial Registration Number</p> <p>ISRCTN95732366</p

    Feasibility of preoperative chemotherapy for locally advanced, operable colon cancer: The pilot phase of a randomised controlled trial

    Get PDF
    Summary: Background Preoperative (neoadjuvant) chemotherapy and radiotherapy are more eff ective than similar postoperative treatment for oesophageal, gastric, and rectal cancers, perhaps because of more eff ective micrometastasis eradication and reduced risk of incomplete excision and tumour cell shedding during surgery. The FOxTROT trial aims to investigate the feasibility, safety, and effi cacy of preoperative chemotherapy for colon cancer. Methods In the pilot stage of this randomised controlled trial, 150 patients with radiologically staged locally advanced (T3 with ≥5 mm invasion beyond the muscularis propria or T4) tumours from 35 UK centres were randomly assigned (2:1) to preoperative (three cycles of OxMdG [oxaliplatin 85 mg/m², l-folinic acid 175 mg, fl uorouracil 400 mg/m² bolus, then 2400 mg/m² by 46 h infusion] repeated at 2-weekly intervals followed by surgery and a further nine cycles of OxMdG) or standard postoperative chemotherapy (12 cycles of OxMdG). Patients with KRAS wild-type tumours were randomly assigned (1:1) to receive panitumumab (6 mg/kg; every 2 weeks with the fi rst 6 weeks of chemotherapy) or not. Treatment allocation was through a central randomisation service using a minimised randomisation procedure including age, radiological T and N stage, site of tumour, and presence of defunctioning colostomy as stratifi cation variables. Primary outcome measures of the pilot phase were feasibility, safety, and tolerance of preoperative therapy, and accuracy of radiological staging. Analysis was by intention to treat. This trial is registered, number ISRCTN 87163246. Findings 96% (95 of 99) of patients started and 89% (85 of 95) completed preoperative chemotherapy with grade 3–4 gastrointestinal toxicity in 7% (seven of 94) of patients. All 99 tumours in the preoperative group were resected, with no signifi cant diff erences in postoperative morbidity between the preoperative and control groups: 14% (14 of 99) versus 12% (six of 51) had complications prolonging hospital stay (p=0·81). 98% (50 of 51) of postoperative chemotherapy patients had T3 or more advanced tumours confi rmed at post-resection pathology compared with 91% (90 of 99) of patients following preoperative chemotherapy (p=0·10). Preoperative therapy resulted in signifi cant downstaging of TNM5 compared with the postoperative group (p=0·04), including two pathological complete responses, apical node involvement (1% [one of 98] vs 20% [ten of 50], p<0·0001), resection margin involvement (4% [ four of 99] vs 20% [ten of 50], p=0·002), and blinded centrally scored tumour regression grading: 31% (29 of 94) vs 2% (one of 46) moderate or greater regression (p=0·0001). Interpretation Preoperative chemotherapy for radiologically staged, locally advanced operable primary colon cancer is feasible with acceptable toxicity and perioperative morbidity. Proceeding to the phase 3 trial, to establish whether the encouraging pathological responses seen with preoperative therapy translates into improved long-term oncological outcome, is appropriate

    Machine learning approach to estimate soil matric potential in the plant root zone based on remote sensing data

    No full text
    There is an increasing interest in using the Internet of Things (IoT) in the agriculture sector to acquire soil- and crop-related parameters that provide helpful information to manage farms more efficiently. One example of this technology is using IoT soil moisture sensors for scheduling irrigation. Soil moisture sensors are usually deployed in nodes. A more significant number of sensors/nodes is recommended in larger fields, such as those found in broadacre agriculture, to better account for soil heterogeneity. However, this comes at a higher and often limiting cost for farmers (purchase, labour costs from installation and removal, and maintenance). Methodologies that enable maintaining the monitoring capability/intensity with a reduced number of in-field sensors would be valuable for the sector and of great interest. In this study, sensor data analysis conducted across two irrigation seasons in three cotton fields from two cotton-growing areas of Australia, identified a relationship between soil matric potential and cumulative satellite-derived crop evapotranspiration (ETcn) between irrigation events. A second-degree function represents this relationship, which is affected by the crop development stage, rainfall, irrigation events and the transition between saturated and non-saturated soil. Two machine learning models [a Dense Multilayer Perceptron (DMP) and Support Vector Regression (SVR) algorithms] were studied to explore these second-degree function properties and assess whether the models were capable of learning the pattern of the soil matric potential-ETcn relation to estimate soil moisture from satellite-derived ETc measurements. The algorithms performance evaluation in predicting soil matric potential applied the k-fold method in each farm individually and combining data from all fields and seasons. The latter approach made it possible to avoid the influence of farm consultants’ decisions regarding when to irrigate the crop in the training process. Both algorithms accurately estimated soil matric potential for individual (up to 90% of predicted values within ±10 kPa) and combined datasets (73% of predicted values within ±10 kPa). The technique presented here can accurately monitor soil matric potential in the root zone of cotton plants with reduced in-field sensor equipment and offers promising applications for its use in irrigation-decision systems

    Preformed and sprayable polymeric mulch film to improve agricultural water use efficiency

    No full text
    Plastic mulch films are widely used in agriculture to enhance crop production by suppressing weeds, conserving soil water and increasing soil temperature. The majority of plastic mulch films are however not biodegradable and are typically removed after each growing season. Recovery of these plastics from the soil is difficult and can affect successive crop yields while causing substantive cost to the environment and farmers. Due to increasingly stringent regulations regarding use of non-degradable plastic in agriculture they are likely to be phased out in the near future. In the past 10 years several classes of &#039;biodegradable&#039; materials have been studied but most of these films are reported to be relatively weak in mechanical properties, not efficiently degradable and cost prohibitive.More recently, researchers have turned their attention to sprayable biodegradable polymer coatings for use on soils due to their easy application and versatility. The ability to mix natural additives, plasticizers and fillers to control and improve the mechanical and biodegradation properties of the core polymeric mulch film has been the driving force behind the development of these next generation sprayable polymeric mulch films.There have been many excellent review articles and papers written about polymeric mulch film, but the developing sprayable polymer systems have not been reviewed to the same extent. This paper focusses on the research progress in the area of biodegradable and sprayable polymer mulch film with emphasis on polymer formulations, properties and application. It also discusses current research to highlight the importance, potential benefits and future challenges in developing a cost effective biodegradable sprayable film for use in production agriculture
    corecore