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RESIDENTIAL DAMP DETECTION WITH TEMPERATURE AND 
HUMIDITY URBAN SENSING 
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* Corresponding author  

ABSTRACT Residential damp can be detected by measuring the temperature and relative humidity in a given space. With these values, one 
can infer the dew point, which is an accurate indicator for condensation. By installing sensor networks that can take these relevant 
measurements, urban sensing systems could be created that help tackle the problem of residential damp. This paper centres in on this concept. 
Potential urban sensing solutions relevant to damp are surveyed. Three existing initiatives were found as well as a variety of potential solutions, 
demonstrating the feasibility of such a network to be installed. A sensor - known as the ‘Frogbox’ – developed from an existing initiative is 
then deployed in a student residence over a two-week period. From the deployment, it was found that the average humidity was at 56%, which 
is above the recommended amount. Improvements to the Frogbox could be made by adding a real-time visualisation feature. Given findings 
from the review and case study, a conceptual urban sensing model for a university student population is then developed.  

 
1. Introduction 

This paper explores the ways in which ‘urban sensing’ can 
contribute to the reduction of ‘residential damp’ in university 
student accommodations. As sensor technologies become more 
affordable and mobile, wide sensor networks are increasingly 
being deployed by citizens, enabling the collective monitoring 
of an environment through the gathering and sharing of data. 
This, essentially, is the process of ‘urban sensing’ - where the 
capture of previously unattainable real-time information can be 
used to solve a wide variety of problems. 
 
In a national study for UK university students, 61% of 
respondents in the private rented sector reported damp, 
condensation or mould (NUS, 2014: p. 4). Occupants of damp 
households have a higher risk of encountering health issues: 
e.g., ‘respiratory symptoms, respiratory infections, allergic 
rhinitis and asthma’ (WHO, 2009). Moreover, university 
students living in private rented accommodations can be 
regarded as a vulnerable population due to their low income, 
tenant status and the UK student housing market perpetuating 
frequent tenant turnover leading to poor maintenance of 
accommodation (Lanthier-Veilleux et al., 2016). This paper is 
based on preliminary work presented in Nepomuceno (2017). 
 
2. Urban sensing solutions  

In this paper, the term ‘urban sensing’ (Lane et al., 2008) is 
used to classify applications where users voluntarily provide 
sensor data, for both personal and collective advantage. ‘Urban 
sensing’ covers terminologies such as ‘participatory sensing’ 
(Burke et al., 2006; Lane et al., 2008), ‘opportunistic sensing’ 
(Lane et al., 2008), ‘citizen sensing’ (Balestrini et al., 2017; 
Burke et al., 2006), ‘crowd-sensing’ (Dutta et al., 2016), 

‘community sensing’ (Krause et al., 2008) and ‘people-centric 
sensing’ (Campbell et al., 2006).  
 
2.1 Urban sensing initiatives for residential damp 
Three existing urban sensing initiatives were found that have 
been deployed in the public realm. A common theme among 
them is that they are ‘bottom-up’ technologies, where a 
community of users had come together before the technologies 
were developed as they had identified a shared problem. This 
has been fostered by online data sharing platforms (Plenario, 
2019; Xively, 2019), the accessibility of open hardware tools 
(Arduino, 2019) and the low cost of open source sensors 
(Adafruit, 2019). 
 
Air Quality Egg (AQE) (AQE, 2019) and Smart Citizen (SC) 
(Diez & Posada, 2013: p. 3; Smart Citizen, 2019) are both open 
source urban sensing systems that comprise a sensor node, an 
online web platform and a mobile application. Both nodes can 
detect temperature and humidity. Data from the nodes are sent 
to an online platform in real-time, where they are displayed on 
a public website. 
 
The Dampbusters initiative (Balestrini et al., 2017) was the 
only implementation of urban sensing that directly sought to 
tackle damp. It was borne out of the ‘City-Commons 
Framework for Citizen Sensing’ (Balestrini et al., 2017). In 
Bristol, where Dampbusters was created, this framework was 
known as ‘The Bristol Approach to Citizen Sensing’ (KWMC, 
2016). The key aim of the framework is to ensure open sensor 
technologies are ‘co-designed by citizens’ to address concerns 
in the community (KWMC, 2016). The development, 
implementation and outcomes of Dampbusters can be found in 
Balestrini et al. (2017).  
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2.2 Potential urban sensing solutions for damp 
Six ‘potential’ solutions were found in the literature. These are 
summarised in Table 1. The capabilities in Capezzuto et al. 
(2014), Zeiger & Huber (2014) and Dutta et al. (2016) all 
include a web-based platform that enables the sharing of data 
from sensors capable of measuring temperature and relative 
humidity (RH). Whilst these studies did not focus on ‘damp’, 
the tools developed could be used to tackle the issue.  
 
Oletic & Bilas (2014) present the design of a ‘battery-powered, 
wearable sensor node’ that has been optimised for crowd-
sensing applications. Simões & de Souza (2016) outline a low-
cost digital infrastructure for temperature and RH monitoring 
based on the IoT. The Data Acquisition System (DAS) Simões 
& de Souza (2016) introduce can be used to form an urban 
sensing system tailored for damp, particularly due to its focus 
on temperature and RH. 

3. Frogbox case study 
This case study utilises the sensor – known as the Frogbox – 
developed in the Dampbusters initiative (Balestrini et al., 
2017). This ‘sensor deployment study’ (Webb et al., 2015) was 
conducted to test the Frogbox sensors in a practical setting. A 
schematic for the sensor shown in Figure 1. The Frogbox was 
used to take temperature and RH readings over a two-week 
period in a private rented student household. Comprehensive 
details of this case study can be found in Nepomuceno (2017). 
Figure 1 Schematic of Frogbox’s functional architecture 

 

FROGBOX 
SENSOR

Inputs
Temperature ( C)

Relative Humidity (%)

Outputs
CSV file

Mains Power 
Source

Table 1 Summary of urban sensing solutions 
(Potential) 
solution Description Sensor node  

capabilities 
Platform  

capabilities Application to damp Reference 

Deployed 
Systems      

Air Quality Egg `Community-led 
sensing network for 

AQ monitoring’ 

Temp., RH, carbon 
monoxide (CO), 
nitrogen dioxide 

(NO2) 

Map-based visual.; 
web/mobile application 

Measure `damp’ 
through temp. and RH 

readings 

AQE 
(2019) 

Smart Citizen `Open source 
participatory sensing 

platform’ 

Temp., RH, CO, 
NO2, solar 

radiation, sound 

Map-based visual.; 
web/mobile application; 

share data on social 
media 

Measure `damp’ 
through temp. and RH 

readings 

Smart 
Citizen 
(2019) 

Dampbusters `Citizen-sensing 
network to reduce 
household damp’ 

Temperature and 
RH 

N/A Could be optimised and 
scaled for university 

wide area 

KWMC 
(2016) 

 
Emerging technologies 

    

EnviObserver Enables users ‘to 
report environmental 
observations with a 

mobile phone’ 

None - qualitative 
descriptions given 
by users & Map-

based visualisation 

Map-based 
visualisation; interface 

to input/access data 

Users would be able to 
report damp conditions 

in their household 

Kotovirta 
et al. 

(2012) 

Social Sensing 
Air Quality 
Concept 

Air quality can be 
recorded in real-time 
whilst moving around 

a city 

Temperature, RH, 
other pollutant 
values; maker-

friendly & Map-
based visual.; share 
data on social media 

Map-based visual.; 
share data on social 

media 

Sensor small enough 
(10x10x10 cm) to be 

used indoors 

Capezzuto 
et al. 

(2014) 

Unified Sensing 
Platform 

`Enables participatory 
sensing for environ. 

monitoring’ 

Temperature, RH; 
mobile 

Map-based visual.; 
support for `operator-
initiated measurement 
campaigns’; alerts for 
threshold exceedance 

`Alerts’ feature could 
lend to automatic 

actuation given the 
exceedance of a 

threshold 

Zeiger & 
Huber 
(2014) 

Air Quality  
Monitoring 
Device 

System that can 
generate indoor and 
outdoor `pollution 

heat maps’ 

Temperature, RH, 
other pollutant 

values 

Map-based visual.; can 
gather and share data to 

the cloud 

Could map `damp’ 
within households and 
across city locations 

Dutta et 
al. (2016) 

Crowd-Sensing 
Component 

Wearable temp. and 
RH sensor node 

Gas, temp., RH and 
atmospheric 

pressure; Bluetooth 

N/A Enhancement of 
temporal and spatial 

density of data’ 

Oletic & 
Bilas 

(2015) 
Automated Data  
Acquisition 
System 

Low cost digital infra. 
for temp. and RH 

monitoring based on 
the IoT 

N/A Defines DAS 
architecture for temp. 

and RH sensors to 
enable IoT connectivity 

Enable bespoke system 
for damp, due to its 

focus on temperature 
and RH 

 

Simões & 
de Souza 
(2016) 

 

 
 

 

 
 

3.1 Monitoring set-up 
The Frogbox comprises of a Raspberry Pi 3 computer and 
DHT22 temperature-humidity sensor encased in bespoke green 
plastic casing. The DHT22 sensor utilises a ‘capacitive 
humidity sensor and thermistor’ to measure surrounding air, 
outputting a digital signal (Adafruit, 2019). The Frogbox 
works for a temperature range of -40°C to 80°C, with ± 0.5°C 
accuracy, and for a 0 to 100% RH range with 2-5% accuracy 
(Adafruit, 2019). The Frogbox was programmed by KWMC 
technicians to take readings every five minutes immediately 
after being connected to a mains power source (i.e. at zero, five, 
ten, 15 etc. minutes past the hour).  
 
The case study residence is an 8-bed, five-storey terraced house 
occupied at the time of the study by University of Bristol 
students in Clifton, Bristol. There are two bedrooms in the 
basement, and on each of the 1st, 2nd and 3rd floors. The building 
is of masonry construction and has a gas central heating system 
for all floors, barre the basement. The Frogbox was placed in a 
basement bedroom (10m2 floor area) with one single-glazed 
double-hung window (approx. 1.575m2). A wall mounted 
electric heater was the room’s primary heat source and a ‘hit 
and miss’ vent below the window (300x150mm) allowing for 
some ventilation. This room was chosen due to the presence of 
damp patches on the ceiling, and was thought to be susceptible 
to condensation. The room received low levels of sunlight, 
reducing natural heat. A dehumidifier was regularly used. 
Readings were taken over a two-week period, from 2017-02-
28 00:00 to 2017-03-12 23:55. The first author recorded when 
the electric heater and dehumidifier were in operation.  
 
3.2 Data processing 
The Frogbox successfully took temperature and RH readings 
every five minutes over the monitoring period. Data readings 
were stored on a MySQL workbench on the Raspberry Pi 3. 
Data was exported as a .CSV file, consisting of a time stamp, 
a Frogbox ID, temperature reading (°C) and a RH reading (%). 
4018 readings were taken over the two weeks. This is less than 
the expected number of 4032 (two weeks = 20160 mins; 

20160/5mins = 4032). This loss of 14 readings may have 
occurred due to transmission errors or power glitches, but this 
was deemed negligible in proportion to the results obtained. 
 
The dew point of a body of air can be used as an indicator for 
condensation, of which high levels can lead to damp conditions 
(USEPA, 2013: p. 15). Therefore, the corresponding dew point 
for each reading was calculated using the following equation 
(Hornbuckle, 2006): 
 
𝐷𝐷 = #$

%&$
 (1) 

 
where,  
𝛾𝛾 = 	 log ,-

.//
+ %1

#21
 (2) 

 
where, D = dew point (℃), RH = relative humidity (%), T = 
temperature (°C), b = 17.27 (water vapour), c = 237.7 
(barometric pressure) (Hornbuckle, 2006). 
 
Hourly outdoor temperature and RH data for the same time 
period was taken from the online weather service ‘Dark Sky’ 
(Dark Sky, 2018).  
 
3.3 Results and analysis 
The full set of the measured data including the dew point, as 
well as time series for individual days is available on the 
University of Bristol’s Research Data Repository 
(Nepomuceno, 2019). The time series plotted for the full two-
week period is shown in Figure 2. The shaded regions on the 
plot denote when the electric heater and dehumidifier were in 
operation.  
 
During the time period where data was collected, the RH 
ranged from 40.3% to 68.7%, averaging at 56.5% (standard 
deviation (SD)=6.7%). The ideal RH in a home is usually 
quoted around 50-55% (USEPA, 2013).  
 

Figure 2 Plot showing measured data over the two-week monitoring period 
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from sensors capable of measuring temperature and relative 
humidity (RH). Whilst these studies did not focus on ‘damp’, 
the tools developed could be used to tackle the issue.  
 
Oletic & Bilas (2014) present the design of a ‘battery-powered, 
wearable sensor node’ that has been optimised for crowd-
sensing applications. Simões & de Souza (2016) outline a low-
cost digital infrastructure for temperature and RH monitoring 
based on the IoT. The Data Acquisition System (DAS) Simões 
& de Souza (2016) introduce can be used to form an urban 
sensing system tailored for damp, particularly due to its focus 
on temperature and RH. 

3. Frogbox case study 
This case study utilises the sensor – known as the Frogbox – 
developed in the Dampbusters initiative (Balestrini et al., 
2017). This ‘sensor deployment study’ (Webb et al., 2015) was 
conducted to test the Frogbox sensors in a practical setting. A 
schematic for the sensor shown in Figure 1. The Frogbox was 
used to take temperature and RH readings over a two-week 
period in a private rented student household. Comprehensive 
details of this case study can be found in Nepomuceno (2017). 
Figure 1 Schematic of Frogbox’s functional architecture 
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3.1 Monitoring set-up 
The Frogbox comprises of a Raspberry Pi 3 computer and 
DHT22 temperature-humidity sensor encased in bespoke green 
plastic casing. The DHT22 sensor utilises a ‘capacitive 
humidity sensor and thermistor’ to measure surrounding air, 
outputting a digital signal (Adafruit, 2019). The Frogbox 
works for a temperature range of -40°C to 80°C, with ± 0.5°C 
accuracy, and for a 0 to 100% RH range with 2-5% accuracy 
(Adafruit, 2019). The Frogbox was programmed by KWMC 
technicians to take readings every five minutes immediately 
after being connected to a mains power source (i.e. at zero, five, 
ten, 15 etc. minutes past the hour).  
 
The case study residence is an 8-bed, five-storey terraced house 
occupied at the time of the study by University of Bristol 
students in Clifton, Bristol. There are two bedrooms in the 
basement, and on each of the 1st, 2nd and 3rd floors. The building 
is of masonry construction and has a gas central heating system 
for all floors, barre the basement. The Frogbox was placed in a 
basement bedroom (10m2 floor area) with one single-glazed 
double-hung window (approx. 1.575m2). A wall mounted 
electric heater was the room’s primary heat source and a ‘hit 
and miss’ vent below the window (300x150mm) allowing for 
some ventilation. This room was chosen due to the presence of 
damp patches on the ceiling, and was thought to be susceptible 
to condensation. The room received low levels of sunlight, 
reducing natural heat. A dehumidifier was regularly used. 
Readings were taken over a two-week period, from 2017-02-
28 00:00 to 2017-03-12 23:55. The first author recorded when 
the electric heater and dehumidifier were in operation.  
 
3.2 Data processing 
The Frogbox successfully took temperature and RH readings 
every five minutes over the monitoring period. Data readings 
were stored on a MySQL workbench on the Raspberry Pi 3. 
Data was exported as a .CSV file, consisting of a time stamp, 
a Frogbox ID, temperature reading (°C) and a RH reading (%). 
4018 readings were taken over the two weeks. This is less than 
the expected number of 4032 (two weeks = 20160 mins; 

20160/5mins = 4032). This loss of 14 readings may have 
occurred due to transmission errors or power glitches, but this 
was deemed negligible in proportion to the results obtained. 
 
The dew point of a body of air can be used as an indicator for 
condensation, of which high levels can lead to damp conditions 
(USEPA, 2013: p. 15). Therefore, the corresponding dew point 
for each reading was calculated using the following equation 
(Hornbuckle, 2006): 
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where, D = dew point (℃), RH = relative humidity (%), T = 
temperature (°C), b = 17.27 (water vapour), c = 237.7 
(barometric pressure) (Hornbuckle, 2006). 
 
Hourly outdoor temperature and RH data for the same time 
period was taken from the online weather service ‘Dark Sky’ 
(Dark Sky, 2018).  
 
3.3 Results and analysis 
The full set of the measured data including the dew point, as 
well as time series for individual days is available on the 
University of Bristol’s Research Data Repository 
(Nepomuceno, 2019). The time series plotted for the full two-
week period is shown in Figure 2. The shaded regions on the 
plot denote when the electric heater and dehumidifier were in 
operation.  
 
During the time period where data was collected, the RH 
ranged from 40.3% to 68.7%, averaging at 56.5% (standard 
deviation (SD)=6.7%). The ideal RH in a home is usually 
quoted around 50-55% (USEPA, 2013).  
 

Figure 2 Plot showing measured data over the two-week monitoring period 
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The dew point ranges from 3.0°C to 13.3°C over the two-week 
period with a mean value of 8.8°C (SD=1.9°C). As the dew 
point gets closer to the indoor air temperature, the relative 
humidity of the air increases. This effect can be seen in Figure 
3 below, where ‘Temperature Difference’ is defined as the 
difference between the indoor air temperature and the dew 
point. 
 
Figure 3 Plot showing variation over time of the relative 
humidity and the difference between the dew point and 
indoor air temperature. 

 
The dew point never exceeded the indoor temperature the two 
weeks, however it surpassed the outdoor temperature at least 
once every day. Long periods were observed when it was 
higher than the outdoor temperature (17/02, 28/02, 01/03, 
03/03 04/03, 06/03). 
 
The operation of the electric heater clearly affects the indoor 
temperature. Generally, it has a stabilising effect, usually 
raising the temperature to a consistent level. This can be seen 
in all the shaded regions on the daily graphs. By plotting the 
indoor air temperature against the relative humidity during 
periods of heater operation, hardly any correlation is seen (see 
Figure 4). 
 
The effect of the dehumidifier on the indoor temperature and 
RH seems inconclusive. At times when it was operating on its 
own, there are occasions when the RH drops (01/03), RH stays 
the same (03/03, 10/02), RH increases (05/03) and RH 
fluctuates (08/03). This lack of correlation may be due to the 
dehumidifier reaching its full water capacity as 
aforementioned, or the introduction of moisture sources to the 
room. 
 
3.4 Value to occupant 
To improve the Frogbox, the case made apparent the need for 
a real-time visualisation function, so effects of actions inside 
the room could be seen. A capability for automatic actuations 
could be added; such that appliances can be triggered for 
operation, over a certain RH level. This maintenance would 
greatly improve the local environment within the room. These 
improvements are considered in the development of the 
concept model below.  
 
 

Figure 4 Plot showing indoor temperature against 
indoor relative humidity for periods when heater was in 
operation (NB r = correlation coefficient). 

 
4. Future system architecture and feasibility 

From the user’s perspective (i.e. the student/occupant), the 
system seen in Figure 5 would operate as follows. A damp 
sensor capable of recording temperature and RH is placed in a 
student household. Through a bespoke smartphone application, 
the user can: (1) view this local data in a similar visual style to 
the time-series in Figure 2, (2) view the data of other 
households connected to the app and (3) upload summaries of 
their data to social media. The user will also have the option to 
input relevant socio-geographic characteristics such as those 
used by Lanthier-Veilleux et al. (2016: p. 5). From this, 
vulnerable students could be identified, and recommended RH 
and/or dew point thresholds can be specified. If this threshold 
is exceeded, then certain actions can be executed. Firstly, the 
sensor can trigger an actuator (e.g. heater, dehumidifier) which 
can lower the RH to a suitable level, thus reducing the risk of 
damp. Secondly, if there is significant exceedance, then 
relevant stakeholders can be notified. These stakeholders could 
include relevant university services, the local council 
authorities, letting agencies/landlords and housing associations 
(ACORN, 2019). This awareness would prompt stakeholders 
to take appropriate action, whether that be carrying out 
repairs/maintenance on the household or offering support to the 
affected user. 
 
Central to this network will be a backend database and a web 
server. The backend is where data received from the sensors 
will be stored, aggregated, processed and analysed. 
Specifically, this is where dew point will be calculated, where 
users can access the app and where data to stakeholders is sent 
from. Alternatively, this could be done through cloud 
computing as in Dutta et al., 2016). Device communication 
within the network will be enabled through Bluetooth (for 
within household) and Internet (Wi-Fi or cellular data) 
connections. The map (in Figure 5) represents how the system 

 

 
 

could collectively monitor residential levels in an area and 
‘connect’ households affected by damp; enhancing the region’s 
digital infrastructure and encouraging community engagement. 
  
Figure 5 System architecture for future case in a 
university accommodation setting (Map data from 
Google 2019) 

 
4.1 Potential Deployment Scenarios  
Based on the data gathered from the case study (Section 3), we 
can estimate the expected data output and power consumption 
for an individual sensor over a one-year period. The .CSV file 
containing the output data for the two weeks was 197 KB in 
size. A .CSV file was created to emulate a year’s worth of data, 
and this took up 5.1MB of memory. Each daily plot (.SVG) 
produced was 80 KB, so the yearly plot data output can be 
estimated as 29.2 MB. The average power consumption of the 
Frogbox sensor is 4W/h (0.004kWh). If continuously operating 
for one year, it would consume 140.2 kWh. Multiplying this by 
the average kWh unit price in the UK (12.5p (UK Power, 
2019)) we can estimate the electricity cost of running one 
sensor over the course of one year. These annual estimations 
for one sensor are summarised in Table 2 below. 
 
Table 2 Estimated annual data output and power 
consumption for one sensor 

Output data Plot data  Power 
consumption 

Cost of 
electricity 

5.1 MB 29.2 MB 140.2 kWh £17.52 
 
Using these figures, we can estimate the anticipated data traffic 
for two potential deployment scenarios: (a) an installation into 
50 student homes, and (b) installation into Bristol University 
residential halls. For the hypothetical deployment of one sensor 
in 50 homes, the anticipated traffic can be found in Table 3. 
 
Table 3 Estimated annual data output and power 
consumption for deployment in 50 homes 

Output data Plot data  Power 
consumption 

Cost of 
electricity 

255 MB 1.46 GB 7010 kWh £876 
 
The second scenario anticipates that one sensor being installed 
for each person living in undergraduate halls at the University 

of Bristol. There are 24 residential halls, with a total of 5760 
places (University of Bristol, 2019), which is assumed to 
roughly equal the number of rooms. 
 
Table 4 Estimated annual data output and power 
consumption for a deployment for each room in Bristol 
University residential halls 

Output 
data 

Plot data  Power 
consumption 

Cost of 
electricity 

29.38 GB 168.19 GB 807E103 kWh £100,915 
 
4.2 Challenges and considerations 
An argument can be made against a high adoption rate of the 
urban sensing system outlined above. Student housing 
contracts typically last 12 months. This frequent turnover of 
tenants could lead to maintenance being neglected. This raises 
an interesting question - do the majority of student tenants 
deeply concerned about their rented household if they are only 
there for a year? If yes, then adoption rates may be low. Many 
students visit home during term breaks meaning a rented 
residence could be vacant for a significant proportion of its 
tenancy. This raises another interesting issue - should the onus 
be put on letting agencies for providing extra maintenance to 
student properties knowing that many of their student 
properties are vacant for much of the year? Data from the urban 
sensing system could perhaps be used to infer occupancy, 
helping investigate this.  
 
Discussions with employees from ACORN on the potential for 
the ‘Dampbusters’ initiative to tackle damp, revealed there is 
relatively low market interest from housing organisations, as it 
was not viewed as a short-term concrete solution. Generally, 
tenants affected by damp want instantaneous action from their 
landlord. Again, this may translate to a low uptake of an urban 
sensing system as described in this paper. However, market 
intelligence points at its usefulness as part of a wider campaign 
against damp, where data can be used to highlight vulnerable 
households. In practice, various kinds of stakeholders should 
be considered in ‘all steps of the deployment process’ (Resch 
et al., 2011). There are parallels to this notion in the ‘Framing’ 
stage of the citizen sensing framework presented by (Balestrini 
et al., 2017). 
 
Other thematic challenges include privacy, quality of data and 
ownership of data. Users’ privacy concerns must be identified 
and addressed. Shilton et al. (2008) have developed design 
principles to address this genuine dilemma in the field. This 
issue may find new importance due to the Investigatory Powers 
Act (2016) which allows governmental authorities access to 
Internet communications data without warrant (IPA, 2016). To 
ensure a high uniform standard of data, readings must be 
collected consistently (e.g. sensor staying in the same place). 
The significantly varying lifestyles of students mean this may 
be difficult. Data ownership is also a notable concern. The 
question of who owns the data – the tenants or the property 
landlord – was found to be a source of ‘tension’ in the 
implementation of the ‘Dampbusters’ initiative (Balestrini et 
al., 2017). This would be of particular concern to landlords, if 
readings made public indicated a poor standard of property. 
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The dew point ranges from 3.0°C to 13.3°C over the two-week 
period with a mean value of 8.8°C (SD=1.9°C). As the dew 
point gets closer to the indoor air temperature, the relative 
humidity of the air increases. This effect can be seen in Figure 
3 below, where ‘Temperature Difference’ is defined as the 
difference between the indoor air temperature and the dew 
point. 
 
Figure 3 Plot showing variation over time of the relative 
humidity and the difference between the dew point and 
indoor air temperature. 

 
The dew point never exceeded the indoor temperature the two 
weeks, however it surpassed the outdoor temperature at least 
once every day. Long periods were observed when it was 
higher than the outdoor temperature (17/02, 28/02, 01/03, 
03/03 04/03, 06/03). 
 
The operation of the electric heater clearly affects the indoor 
temperature. Generally, it has a stabilising effect, usually 
raising the temperature to a consistent level. This can be seen 
in all the shaded regions on the daily graphs. By plotting the 
indoor air temperature against the relative humidity during 
periods of heater operation, hardly any correlation is seen (see 
Figure 4). 
 
The effect of the dehumidifier on the indoor temperature and 
RH seems inconclusive. At times when it was operating on its 
own, there are occasions when the RH drops (01/03), RH stays 
the same (03/03, 10/02), RH increases (05/03) and RH 
fluctuates (08/03). This lack of correlation may be due to the 
dehumidifier reaching its full water capacity as 
aforementioned, or the introduction of moisture sources to the 
room. 
 
3.4 Value to occupant 
To improve the Frogbox, the case made apparent the need for 
a real-time visualisation function, so effects of actions inside 
the room could be seen. A capability for automatic actuations 
could be added; such that appliances can be triggered for 
operation, over a certain RH level. This maintenance would 
greatly improve the local environment within the room. These 
improvements are considered in the development of the 
concept model below.  
 
 

Figure 4 Plot showing indoor temperature against 
indoor relative humidity for periods when heater was in 
operation (NB r = correlation coefficient). 

 
4. Future system architecture and feasibility 

From the user’s perspective (i.e. the student/occupant), the 
system seen in Figure 5 would operate as follows. A damp 
sensor capable of recording temperature and RH is placed in a 
student household. Through a bespoke smartphone application, 
the user can: (1) view this local data in a similar visual style to 
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households connected to the app and (3) upload summaries of 
their data to social media. The user will also have the option to 
input relevant socio-geographic characteristics such as those 
used by Lanthier-Veilleux et al. (2016: p. 5). From this, 
vulnerable students could be identified, and recommended RH 
and/or dew point thresholds can be specified. If this threshold 
is exceeded, then certain actions can be executed. Firstly, the 
sensor can trigger an actuator (e.g. heater, dehumidifier) which 
can lower the RH to a suitable level, thus reducing the risk of 
damp. Secondly, if there is significant exceedance, then 
relevant stakeholders can be notified. These stakeholders could 
include relevant university services, the local council 
authorities, letting agencies/landlords and housing associations 
(ACORN, 2019). This awareness would prompt stakeholders 
to take appropriate action, whether that be carrying out 
repairs/maintenance on the household or offering support to the 
affected user. 
 
Central to this network will be a backend database and a web 
server. The backend is where data received from the sensors 
will be stored, aggregated, processed and analysed. 
Specifically, this is where dew point will be calculated, where 
users can access the app and where data to stakeholders is sent 
from. Alternatively, this could be done through cloud 
computing as in Dutta et al., 2016). Device communication 
within the network will be enabled through Bluetooth (for 
within household) and Internet (Wi-Fi or cellular data) 
connections. The map (in Figure 5) represents how the system 

 

 
 

could collectively monitor residential levels in an area and 
‘connect’ households affected by damp; enhancing the region’s 
digital infrastructure and encouraging community engagement. 
  
Figure 5 System architecture for future case in a 
university accommodation setting (Map data from 
Google 2019) 

 
4.1 Potential Deployment Scenarios  
Based on the data gathered from the case study (Section 3), we 
can estimate the expected data output and power consumption 
for an individual sensor over a one-year period. The .CSV file 
containing the output data for the two weeks was 197 KB in 
size. A .CSV file was created to emulate a year’s worth of data, 
and this took up 5.1MB of memory. Each daily plot (.SVG) 
produced was 80 KB, so the yearly plot data output can be 
estimated as 29.2 MB. The average power consumption of the 
Frogbox sensor is 4W/h (0.004kWh). If continuously operating 
for one year, it would consume 140.2 kWh. Multiplying this by 
the average kWh unit price in the UK (12.5p (UK Power, 
2019)) we can estimate the electricity cost of running one 
sensor over the course of one year. These annual estimations 
for one sensor are summarised in Table 2 below. 
 
Table 2 Estimated annual data output and power 
consumption for one sensor 

Output data Plot data  Power 
consumption 

Cost of 
electricity 

5.1 MB 29.2 MB 140.2 kWh £17.52 
 
Using these figures, we can estimate the anticipated data traffic 
for two potential deployment scenarios: (a) an installation into 
50 student homes, and (b) installation into Bristol University 
residential halls. For the hypothetical deployment of one sensor 
in 50 homes, the anticipated traffic can be found in Table 3. 
 
Table 3 Estimated annual data output and power 
consumption for deployment in 50 homes 

Output data Plot data  Power 
consumption 

Cost of 
electricity 

255 MB 1.46 GB 7010 kWh £876 
 
The second scenario anticipates that one sensor being installed 
for each person living in undergraduate halls at the University 

of Bristol. There are 24 residential halls, with a total of 5760 
places (University of Bristol, 2019), which is assumed to 
roughly equal the number of rooms. 
 
Table 4 Estimated annual data output and power 
consumption for a deployment for each room in Bristol 
University residential halls 

Output 
data 

Plot data  Power 
consumption 

Cost of 
electricity 

29.38 GB 168.19 GB 807E103 kWh £100,915 
 
4.2 Challenges and considerations 
An argument can be made against a high adoption rate of the 
urban sensing system outlined above. Student housing 
contracts typically last 12 months. This frequent turnover of 
tenants could lead to maintenance being neglected. This raises 
an interesting question - do the majority of student tenants 
deeply concerned about their rented household if they are only 
there for a year? If yes, then adoption rates may be low. Many 
students visit home during term breaks meaning a rented 
residence could be vacant for a significant proportion of its 
tenancy. This raises another interesting issue - should the onus 
be put on letting agencies for providing extra maintenance to 
student properties knowing that many of their student 
properties are vacant for much of the year? Data from the urban 
sensing system could perhaps be used to infer occupancy, 
helping investigate this.  
 
Discussions with employees from ACORN on the potential for 
the ‘Dampbusters’ initiative to tackle damp, revealed there is 
relatively low market interest from housing organisations, as it 
was not viewed as a short-term concrete solution. Generally, 
tenants affected by damp want instantaneous action from their 
landlord. Again, this may translate to a low uptake of an urban 
sensing system as described in this paper. However, market 
intelligence points at its usefulness as part of a wider campaign 
against damp, where data can be used to highlight vulnerable 
households. In practice, various kinds of stakeholders should 
be considered in ‘all steps of the deployment process’ (Resch 
et al., 2011). There are parallels to this notion in the ‘Framing’ 
stage of the citizen sensing framework presented by (Balestrini 
et al., 2017). 
 
Other thematic challenges include privacy, quality of data and 
ownership of data. Users’ privacy concerns must be identified 
and addressed. Shilton et al. (2008) have developed design 
principles to address this genuine dilemma in the field. This 
issue may find new importance due to the Investigatory Powers 
Act (2016) which allows governmental authorities access to 
Internet communications data without warrant (IPA, 2016). To 
ensure a high uniform standard of data, readings must be 
collected consistently (e.g. sensor staying in the same place). 
The significantly varying lifestyles of students mean this may 
be difficult. Data ownership is also a notable concern. The 
question of who owns the data – the tenants or the property 
landlord – was found to be a source of ‘tension’ in the 
implementation of the ‘Dampbusters’ initiative (Balestrini et 
al., 2017). This would be of particular concern to landlords, if 
readings made public indicated a poor standard of property. 
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International Conference on Smart Infrastructure and Construction 2019 (ICSIC)

 

 
 

5. Summary 

This paper has contributed to a growing body of knowledge on 
tackling residential damp using urban sensing systems. The 
research applies this technology to the context of university 
student accommodation, arguing that students should be 
regarded as a ‘vulnerable population at risk of living in damp 
households’ (Lanthier-Veilleux et al., 2016). Urban sensing 
solutions were surveyed which demonstrate the feasibility of 
such a sensor network to be implemented. A case study on a 
student residence using KWMC’s Frogbox was conducted to 
assess its value to the occupant. This led to the development of 
a concept urban sensing model for university student 
populations which improves the built environment by 
maintaining humidity levels in a household. The relative merits 
and short-comings of this model are discussed, outlining 
implications for relevant stakeholders.  
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5. Summary 

This paper has contributed to a growing body of knowledge on 
tackling residential damp using urban sensing systems. The 
research applies this technology to the context of university 
student accommodation, arguing that students should be 
regarded as a ‘vulnerable population at risk of living in damp 
households’ (Lanthier-Veilleux et al., 2016). Urban sensing 
solutions were surveyed which demonstrate the feasibility of 
such a sensor network to be implemented. A case study on a 
student residence using KWMC’s Frogbox was conducted to 
assess its value to the occupant. This led to the development of 
a concept urban sensing model for university student 
populations which improves the built environment by 
maintaining humidity levels in a household. The relative merits 
and short-comings of this model are discussed, outlining 
implications for relevant stakeholders.  
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