725 research outputs found

    Decoherence suppression via environment preparation

    Full text link
    To protect a quantum system from decoherence due to interaction with its environment, we investigate the existence of initial states of the environment allowing for decoherence-free evolution of the system. For models in which a two-state system interacts with a dynamical environment, we prove that such states exist if and only if the interaction and self-evolution Hamiltonians share an eigenstate. If decoherence by state preparation is not possible, we show that initial states minimizing decoherence result from a delicate compromise between the environment and interaction dynamics.Comment: 4 pages, 2 figure

    High selenium intake and increased diabetes risk: experimental evidence for interplay between selenium and carbohydrate metabolism

    Get PDF
    The essential trace element selenium has long been considered to exhibit anti-diabetic and insulin-mimetic properties, but recent epidemiological studies indicated supranutritional selenium intake and high plasma selenium levels as possible risk factors for development of type 2 diabetes, pointing to adverse effects of selenium on carbohydrate metabolism in humans. However, increased plasma selenium levels might be both a consequence and a cause of diabetes. We summarize current evidence for an interference of selenium compounds with insulin-regulated molecular pathways, most notably the phosphoinositide-3-kinase/protein kinase B signaling cascade, which may underlie some of the pro- and anti-diabetic actions of selenium. Furthermore, we discuss reports of hyperinsulinemia, hyperglycemia and insulin resistance in mice overexpressing the selenoenzyme glutathione peroxidase 1. The peroxisomal proliferator-activated receptor gamma coactivator 1α represents a key regulator for biosynthesis of the physiological selenium transporter, selenoprotein P, as well as for hepatic gluconeogenesis. As proliferator-activated receptor gamma coactivator 1α has been shown to be up-regulated in livers of diabetic animals and to promote insulin resistance, we hypothesize that dysregulated pathways in carbohydrate metabolism and a disturbance of selenium homeostasis are linked via proliferator-activated receptor gamma coactivator 1α

    Concept of an ionizing time-domain matter-wave interferometer

    Full text link
    We discuss the concept of an all-optical and ionizing matter-wave interferometer in the time domain. The proposed setup aims at testing the wave nature of highly massive clusters and molecules, and it will enable new precision experiments with a broad class of atoms, using the same laser system. The propagating particles are illuminated by three pulses of a standing ultraviolet laser beam, which detaches an electron via efficient single photon-absorption. Optical gratings may have periods as small as 80 nm, leading to wide diffraction angles for cold atoms and to compact setups even for very massive clusters. Accounting for the coherent and the incoherent parts of the particle-light interaction, we show that the combined effect of phase and amplitude modulation of the matter waves gives rise to a Talbot-Lau-like interference effect with a characteristic dependence on the pulse delay time.Comment: 25 pages, 5 figure

    Zone-plate focusing of Bose-Einstein condensates for atom optics and erasable high-speed lithography of quantum electronic components

    Get PDF
    We show that Fresnel zone plates, fabricated in a solid surface, can sharply focus atomic Bose-Einstein condensates that quantum reflect from the surface or pass through the etched holes. The focusing process compresses the condensate by orders of magnitude despite inter-atomic repulsion. Crucially, the focusing dynamics are insensitive to quantum fluctuations of the atom cloud and largely preserve the condensates' coherence, suggesting applications in passive atom-optical elements, for example zone plate lenses that focus atomic matter waves and light at the same point to strengthen their interaction. We explore transmission zone-plate focusing of alkali atoms as a route to erasable and scalable lithography of quantum electronic components in two-dimensional electron gases embedded in semiconductor nanostructures. To do this, we calculate the density profile of a two-dimensional electron gas immediately below a patch of alkali atoms deposited on the surface of the nanostructure by zone-plate focusing. Our results reveal that surface-induced polarization of only a few thousand adsorbed atoms can locally deplete the electron gas. We show that, as a result, the focused deposition of alkali atoms by existing zone plates can create quantum electronic components on the 50 nm scale, comparable to that attainable by ion beam implantation but with minimal damage to either the nanostructure or electron gas.Comment: 13 pages, 7 figure

    Contrasting prefrontal cortex contributions to episodic memory dysfunction in behavioural variant frontotemporal dementia and alzheimer's disease

    Get PDF
    Recent evidence has questioned the integrity of episodic memory in behavioural variant frontotemporal dementia (bvFTD), where recall performance is impaired to the same extent as in Alzheimer's disease (AD). While these deficits appear to be mediated by divergent patterns of brain atrophy, there is evidence to suggest that certain prefrontal regions are implicated across both patient groups. In this study we sought to further elucidate the dorsolateral (DLPFC) and ventromedial (VMPFC) prefrontal contributions to episodic memory impairment in bvFTD and AD. Performance on episodic memory tasks and neuropsychological measures typically tapping into either DLPFC or VMPFC functions was assessed in 22 bvFTD, 32 AD patients and 35 age- and education-matched controls. Behaviourally, patient groups did not differ on measures of episodic memory recall or DLPFC-mediated executive functions. BvFTD patients were significantly more impaired on measures of VMPFC-mediated executive functions. Composite measures of the recall, DLPFC and VMPFC task scores were covaried against the T1 MRI scans of all participants to identify regions of atrophy correlating with performance on these tasks. Imaging analysis showed that impaired recall performance is associated with divergent patterns of PFC atrophy in bvFTD and AD. Whereas in bvFTD, PFC atrophy covariates for recall encompassed both DLPFC and VMPFC regions, only the DLPFC was implicated in AD. Our results suggest that episodic memory deficits in bvFTD and AD are underpinned by divergent prefrontal mechanisms. Moreover, we argue that these differences are not adequately captured by existing neuropsychological measures

    A METHOD OF MODELING SOURCE AREA RESPONSE TO CLIMATE VARIABILITY

    Get PDF
    ABSTRACT: A modeling framework for understanding spatially-explicit relationships between soil moisture dynamics and streamflow generation in upland humid forested watersheds is described. The framework consists of a dynamic canopy interception module and a 2D finite element hillslope hydrology model (IHDM4) having hillslope planes objectively delineated using contour-based terrain analysis (TAPES-C). This approach is fine-scaled both in space and time allowing for the inclusion of topographic and soil heterogeneities necessary for mapping oscillations in the variable source areas of streamflow generation. The modeling framework is implemented for a small control watershed (WS2) at the Coweeta Hydrologic Laboratory. Simulation results to be presented at the conference include the climate-scale response of variable source areas for hillslope cross-sections to hourly climate data spanning years in which total precipitation was: (a) >20% above average, (b) near average, (c) >20% below average
    corecore