6 research outputs found

    Antifungal, Antibacterial, and Cytotoxic Activities of Silver Nanoparticles Synthesized from Aqueous Extracts of Mace-Arils of Myristica fragrans

    No full text
    In the present study, mace-mediated silver nanoparticles (mace-AgNPs) were synthesized, characterized, and evaluated against an array of pathogenic microorganisms. Mace, the arils of Myristica fragrans, are a rich source of several bioactive compounds, including polyphenols and aromatic compounds. During nano synthesis, the bioactive compounds in mace aqueous extracts serve as excellent bio reductants, stabilizers, and capping agents. The UV-VIS spectroscopy of the synthesized NPs showed an intense and broad SPR absorption peak at 456 nm. Dynamic light scattering (DLS) analysis showed the size with a Z average of 50 nm, while transmission electron microscopy (TEM) studies depicted the round shape and small size of the NPs, which ranged between 5–28 nm. The peaks related to important functional groups, such as phenols, alcohols, carbonyl groups, amides, alkanes and alkenes, were obtained on a Fourier-transform infrared spectroscopy (FTIR) spectrum. The peak at 3 keV on the energy dispersive X-ray spectrum (EDX) validated the presence of silver (Ag). Mace-silver nanoparticles exhibited potent antifungal and antibacterial activity against several pathogenic microorganisms. Additionally, the synthesized mace-AgNPs displayed an excellent cytotoxic effect against the human cervical cancer cell line. The mace-AgNPs demonstrated robust antibacterial, antifungal, and cytotoxic activity, indicating that the mace-AgNPs might be used in the agrochemical industry, pharmaceutical industry, and biomedical applications. However, future studies to understand its mode of action are needed

    Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L.

    No full text
    Arbuscular mycorrhizal fungi (AMF) association increases plant stress tolerance. This study aimed to determine the mitigation effect of AMF on the growth and metabolic changes of cucumbers under adverse impact of salt stress. Salinity reduced the water content and synthesis of pigments. However, AMF inoculation ameliorated negative effects by enhancing the biomass, synthesis of pigments, activity of antioxidant enzymes, including superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase, and the content of ascorbic acid, which might be the result of lower level lipid peroxidation and electrolyte leakage. An accumulation of phenols and proline in AMF-inoculated plants also mediated the elimination of superoxide radicals. In addition, jasmonic acid, salicylic acid and several important mineral elements (K, Ca, Mg, Zn, Fe, Mn and Cu) were enhanced with significant reductions in the uptake of deleterious ions like Na+. These results suggested that AMF can protect cucumber growth from salt stress. Keywords: AMF, Lipid peroxidation, Antioxidant enzymes, Proline, Growth hormones, NaC

    Antimicrobial and antioxidant potential of the silver nanoparticles synthesized using aqueous extracts of coconut meat (Cocos nucifera L)

    No full text
    Abstract Human pathogenic fungi and bacteria pose a huge threat to human life, accounting for high rates of mortality every year. Unfortunately, the past few years have seen an upsurge in multidrug resistance pathogens. Consequently, finding an effective alternative antimicrobial agent is of utmost importance. Hence, this study aimed to phytofabricate silver nanoparticles (AgNPs) using aqueous extracts of the solid endosperm of Cocos nucifera L, also known as coconut meat (Cm). Green synthesis is a facile, cost-effective and eco-friendly methods which has several benefits over other physical and chemical methods. The synthesized nanoparticles were characterized by UV–Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The Cm-AgNPs showed a UV–Vis peak at 435 nm and were crystalline and quasi-spherical, with an average size of 15 nm. The FTIR spectrum displayed functional groups of phenols, alkaloids, sugars, amines, and carbonyl compounds, which are vital in the reduction and capping of NPs. The antibacterial and anticandidal efficacy of the Cm-AgNPs was assessed by the agar-well diffusion method and expressed as a zone of inhibition (ZOI). Amongst all the test isolates, Staphylococcus epidermidis, Candida auris, and methicillin-resistant Staphylococcus epidermidis were more susceptible to the NPs with a ZOI of 26.33 ± 0.57 mm, 19.33 ± 0.57 mm, and 18 ± 0.76 mm. The MIC and MFC values for Candida spp. were higher than the bacterial test isolates. Scanning electron microscopic studies of all the test isolates at their MIC concentrations showed drastically altered cell morphology, indicating that the NPs could successfully cross the cell barrier and damage the cell integrity, causing cell death. This study reports the efficacy of Cm-AgNPs against several Candida and bacterial strains, which had not been reported in earlier studies. Furthermore, the synthesized AgNPs exhibited significant antioxidant activity. Thus, the findings of this study strongly imply that the Cm-AgNPs can serve as promising candidates for therapeutic applications, especially against multidrug-resistant isolates of Candida and bacteria. However, further investigation is needed to understand the mode of action and biosafety

    Green Biosynthesis of Silver Nanoparticles Using <i>Vaccinium oxycoccos</i> (Cranberry) Extract and Evaluation of Their Biomedical Potential

    No full text
    Eco-friendly preparation of metallic nanoparticles (NPs) is a greatly evolving field of scientific research. These types of NPs have gained substantial recognition from scientists, including chemists, chemical biologists and technologists, who have successfully exploited them for the fabrication of a variety of advanced nanodevices. Herein, silver (Ag) NPs were synthesized by a green approach using the aqueous extract of Vaccinium oxycoccos (cranberry), which not only reduced the silver ions but also stabilized the surface of the resultant Ag NPs. The formation of Ag NPs is confirmed by different analytical techniques, including powder X-ray diffraction, UV analysis, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), transmission electron microscopy (TEM) and Fourier-transform infrared spectroscopy (FT-IR). The UV analysis of the aqueous solution of the reaction mixture demonstrated an absorption band at ~450 nm, which is the typical peak of Ag NPs, leading to the confirmation of product formation. While the XRD confirmed the crystallinity of the sample and the formation of a face-centered cubic (fcc) structure, on the other hand, TEM revealed the presence of spherical NPs with an approximate size range between 5–30 nm. Furthermore, the as-obtained Ag NPs were subjected to thorough investigations to explore the biomedical potential of the sample. In this case, the Ag NPs demonstrated considerable antioxidant and antifungal properties towards various pathogens. In addition, Ag NPs also showed substantial inhibition of spore germination

    Green Biosynthesis of Silver Nanoparticles Using Vaccinium oxycoccos (Cranberry) Extract and Evaluation of Their Biomedical Potential

    No full text
    Eco-friendly preparation of metallic nanoparticles (NPs) is a greatly evolving field of scientific research. These types of NPs have gained substantial recognition from scientists, including chemists, chemical biologists and technologists, who have successfully exploited them for the fabrication of a variety of advanced nanodevices. Herein, silver (Ag) NPs were synthesized by a green approach using the aqueous extract of Vaccinium oxycoccos (cranberry), which not only reduced the silver ions but also stabilized the surface of the resultant Ag NPs. The formation of Ag NPs is confirmed by different analytical techniques, including powder X-ray diffraction, UV analysis, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), transmission electron microscopy (TEM) and Fourier-transform infrared spectroscopy (FT-IR). The UV analysis of the aqueous solution of the reaction mixture demonstrated an absorption band at ~450 nm, which is the typical peak of Ag NPs, leading to the confirmation of product formation. While the XRD confirmed the crystallinity of the sample and the formation of a face-centered cubic (fcc) structure, on the other hand, TEM revealed the presence of spherical NPs with an approximate size range between 5&ndash;30 nm. Furthermore, the as-obtained Ag NPs were subjected to thorough investigations to explore the biomedical potential of the sample. In this case, the Ag NPs demonstrated considerable antioxidant and antifungal properties towards various pathogens. In addition, Ag NPs also showed substantial inhibition of spore germination
    corecore