21 research outputs found

    Ethanol vs. glycerol: Understanding the lack of correlation between the oxidation currents and the production of CO2 on Pt nanoparticles

    Get PDF
    In the last decades ethanol and glycerol arose as potential fuels for fuel cells. Based on their importance to the field and molecular similarity, here we compare the electrooxidation of ethanol and glycerol on platinum nanoparticles as an attempt to learn about their differences and similarities in terms of oxidation pathways. By using in situ FTIR we interpret the electrochemical behavior in terms of different pathways involving the production of carboxylic acids for both alcohols. For ethanol, CO2 is produced from CO in a direct pathway involving several electrons, while acetic acid is produced through a parallel pathway. Conversely, for glycerol CO2 seems to be mainly produced through a sequential pathway involving carboxylic acids, each one involving few electrons. The results suggest that glycerol demands surfaces that speed up the oxidation of partially oxidized species formed at intermediate potentials.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    Ethanol vs. glycerol: Understanding the lack of correlation between the oxidation currents and the production of CO2 on Pt nanoparticles

    Get PDF
    In the last decades ethanol and glycerol arose as potential fuels for fuel cells. Based on their importance to the field and molecular similarity, here we compare the electrooxidation of ethanol and glycerol on platinum nanoparticles as an attempt to learn about their differences and similarities in terms of oxidation pathways. By using in situ FTIR we interpret the electrochemical behavior in terms of different pathways involving the production of carboxylic acids for both alcohols. For ethanol, CO2 is produced from CO in a direct pathway involving several electrons, while acetic acid is produced through a parallel pathway. Conversely, for glycerol CO2 seems to be mainly produced through a sequential pathway involving carboxylic acids, each one involving few electrons. The results suggest that glycerol demands surfaces that speed up the oxidation of partially oxidized species formed at intermediate potentials.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    Effect of Fe additive on the hydrogenation-dehydrogenation properties of 2LiH + MgB2/2LiBH4 + MgH2 system

    Get PDF
    Lithium reactive hydride composite 2LiBH4 + MgH2 (Li-RHC) has been lately investigated owing to its potential as hydrogen storage medium for mobile applications. However, the main problem associated with this material is its sluggish kinetic behavior. Thus, aiming to improve the kinetic properties, in the present work the effect of the addition of Fe to Li-RHC is investigated. The addition of Fe lowers the starting decomposition temperature of Li-RHC about 30 °C and leads to a considerably faster isothermal dehydrogenation rate during the first hydrogen sorption cycle. Upon hydrogenation, MgH2 and LiBH4 are formed whereas Fe appears not to take part in any reaction. Upon the first dehydrogenation, the formation of nanocrystalline, well distributed FeB reduces the overall hydrogen storage capacity of the system. Throughout cycling, the agglomeration of FeB particles causes a kinetic deterioration. An analysis of the hydrogen kinetic mechanism during cycling shows that the hydrogenation and dehydrogenation behavior is influenced by the activity of FeB as heterogeneous nucleation center for MgB2 and its non-homogenous distribution in the Li-RHC matrix.Fil: Puszkiel, Julián Atilio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Helmholtz-zentrum Geesthacht - Zentrum Für Material- Und Küstenforschung Gmbh;Fil: Gennari, Fabiana Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Centro Atómico Bariloche; ArgentinaFil: Arneodo Larochette, Pierre Paul. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Centro Atómico Bariloche; ArgentinaFil: Ramallo Lopez, Jose Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Vainio, U.. Helmholtz-zentrum Geesthacht - Zentrum Für Material- Und Küstenforschung Gmbh; . Deutsches Elektronen-Synchrotron; AlemaniaFil: Karimi, F.. Helmholtz-zentrum Geesthacht - Zentrum Für Material- Und Küstenforschung Gmbh;Fil: Pranzas, P. K.. Helmholtz-zentrum Geesthacht - Zentrum Für Material- Und Küstenforschung Gmbh;Fil: Troiani, Horacio Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Centro Atómico Bariloche; ArgentinaFil: Pistidda, C.. Helmholtz-zentrum Geesthacht - Zentrum Für Material- Und Küstenforschung Gmbh;Fil: Jepsen, J.. Helmholtz-zentrum Geesthacht - Zentrum Für Material- Und Küstenforschung Gmbh;Fil: Tolkiehn, M.. Deutsches Elektronen-Synchrotron; AlemaniaFil: Welter, E.. Deutsches Elektronen-Synchrotron; AlemaniaFil: Klassen, T.. Helmholtz-zentrum Geesthacht - Zentrum Für Material- Und Küstenforschung Gmbh;Fil: Bellosta Von Colbe, J.. Helmholtz-zentrum Geesthacht - Zentrum Für Material- Und Küstenforschung Gmbh;Fil: Dornheim, M.. Helmholtz-zentrum Geesthacht - Zentrum Für Material- Und Küstenforschung Gmbh

    Reply to "comment on 'Free-Radical Formation by the Peroxidase-Like Catalytic Activity of MFe2O4 (M = Fe, Ni, and Mn) Nanoparticles'"

    Get PDF
    Recently we have reported a qualitative, quantitative and reproducible study of the generation of free radicals as a result of the surface catalytic activity of Fe3O4, Fe2O3, MnFe2O4 and NiFe2O4 nanoparticles as a function of the Fe2+/Fe3+ oxidation state under different pHs (4.8 and 7.4) and temperatures (25 ºC and 40 ºC) condition. These results were contrasted with those obtained from the in vitro experiments in BV2 cells incubated with dextran-coated magneticnanoparticles. Based on these results we affirm that our ferrite magnetic nanoparticles catalyze the formation of free radicals and the decomposition of H2O2 by a ?peroxidase-like? activity. In a comment on this article, Meunier and A. Robert question two points: First they assert that the measured free radicals are not produced by a peroxidase reaction. Also, based on a different normalization method from those reported in our work, they also discuss that the reaction is not catalytic. Here we reply the arguments of the authors about these two points.Fil: Moreno Maldonado, Ana Carolina. Instituto de Nanociencia de Aragón; ; EspañaFil: Winkler, Elin Lilian. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; ArgentinaFil: Raineri Andersen, Mariana. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; ArgentinaFil: Toro Cordova, Alfonso. Universidad de Zaragoza; EspañaFil: Rodriguez, Luis Miguel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; ArgentinaFil: Troiani, Horacio Esteban. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mojica Pisciotti, Mary Luz. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vasquez Mansilla, Marcelo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; ArgentinaFil: Tobia, Dina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; ArgentinaFil: Nadal, Marcela. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; ArgentinaFil: Torres Molina, Teobaldo Enrique. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; ArgentinaFil: de Biasi, Emilio. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; ArgentinaFil: Ramos, Carlos Alberto. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; ArgentinaFil: Goya, Gerardo Fabian. Universidad de Zaragoza; EspañaFil: Zysler, Roberto Daniel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; ArgentinaFil: Lima, Enio Junior. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentin

    Photonic Crystals from Ordered Mesoporous Thin-Film Functional Building Blocks

    Get PDF
    Advanced Functional Materials Vol. 17 (8), p. 1247 - 1254Environment-sensitive Bragg reflectors are built using functional mesoporous thin films as building blocks. Tuning of optical properties is achieved by changing the composition or porosity of the slabs or the introduction of planar defects. Sorption or capillary condensation of molecules into the pore system results in a 10-40 nm photonic bandgap (PBG) shift. Organic functions added to the pore surface change the response, permitting tailoring of the selectivity towards small-size molecules.Peer reviewe

    Agglomeration and Cleaning of Carbon Supported Palladium Nanoparticles in Electrochemical Environment

    Get PDF
    Here we investigate the electrochemical behavior of Pd/C synthesized by reduction with ethylene glycol in the presence of polyvinylpyrrolidone (EG-PVP). EG-PVP produces nanoparticles (NPs) with a narrow size distribution, but some of them remain covered by impurities after the synthesis. After successive voltammetric cycles, NPs become cleaner, but some agglomeration and structural modification occur; these effects affect the electrochemical behavior of Pd/C in different ways, so we used CO as a probe to better understand the processes taking place. CO stripping shows that the general features of the multiple oxidation peaks change with the number of cycles. Possibly, CO and OH from different NPs react when the particles agglomerate, contributing to CO stripping changes. Finally, different active areas are found when the charges involved in CO oxidation and PdO reduction are compared. Such differences are rationalized in terms of a balance between the increase of sites which promote the oxidation of CO and the loss of area provoked by the growing of the particles.Fil: Martins, Cauê A.. Universidade Federal do Mato Grosso do Sul; BrasilFil: Fernández, Pablo Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Troiani, Horacio E.. Comision Nacional de Energía Atómica. Gerencia de Área Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Física de Metales; ArgentinaFil: Martins, María Elisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Arenillas de la Puente, Ana. Instituto Nacional del Carbón; EspañaFil: Camara, Giuseppe A.. Universidade Federal do Mato Grosso do Sul; Brasi

    Photonic Crystals from Ordered Mesoporous Thin-Film Functional Building Blocks

    No full text
    Advanced Functional Materials Vol. 17 (8), p. 1247 - 1254Environment-sensitive Bragg reflectors are built using functional mesoporous thin films as building blocks. Tuning of optical properties is achieved by changing the composition or porosity of the slabs or the introduction of planar defects. Sorption or capillary condensation of molecules into the pore system results in a 10-40 nm photonic bandgap (PBG) shift. Organic functions added to the pore surface change the response, permitting tailoring of the selectivity towards small-size molecules.Peer reviewe

    Annealing effects on the magnetic and magnetotransport properties of iron oxide nanoparticles self-assemblies

    No full text
    In magnetic tunnel junctions based on iron oxide nanoparticles the disorder and the oxidation state of the surface spin as well as the nanoparticles functionalization play a crucial role in the magnetotransport properties. In this work, we report a systematic study of the effects of vacuum annealing on the structural, magnetic and transport properties of self-assembled ∼10 nm Fe3O4nanoparticles. The high temperature treatment (from 573 to 873 K) decomposes the organic coating into amorphous carbon, reducing the electrical resistivity of the assemblies by 4 orders of magnitude. At the same time, the 3.Fe2+/(Fe3++Fe2+) ratio is reduced from 1.11 to 0.13 when the annealing temperature of the sample increases from 573 to 873 K, indicating an important surface oxidation. Although the 2 nm physical gap remains unchanged with the thermal treatment, a monotonous decrease of tunnel barrier width was obtained from the electron transport measurements when the annealing temperature increases, indicating an increment in the number of defects and hot-spots in the gap between the nanoparticles. This is reflected in the reduction of the spin dependent tunneling, which reduces the interparticle magnetoresistance. This work shows new insights about influence of the nanoparticle interfacial composition, as well their the spatial arrangement, on the tunnel transport of self-assemblies, and evidence the importance of optimizing the nanostructure fabrication for increasing the tunneling current without degrading the spin polarized current.The authors are thankful to Argentine government agency Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) for the financial support of the work through Grant No. PICT-2019-02059, and Universidad Nacional de Cuyo (UNCuyo) for support through Grants No. 06/C029-T1. F Fabris acknowledges the São Paulo Research Foundation (FAPESP) for the post-doctoral fellowship with Grant No. 2019/13678-1. The authors also gratefully acknowledge the European Commission for the financial support under the H2020-MSCA-RISE-2016, SPICOLOST project N° 734187 and H2020-MSCA-RISE-2021 ULTIMATE-I project N° 101007825. FR acknowledges financial support of the Ministerio de Economía y Competitividad of Spain (Project No. MAT2016-80762-R), and Xunta de Galicia (Centro Singular de Investigación de Galicia accreditation 2016–2019) and the European Union (European Regional Development Fund—ERDF).Peer reviewe

    Hydrogen storage in Mg-LiBH4 composites catalyzed by FeF3

    Get PDF
    Mge10 mol% LiBH4 composite plus small amounts of FeF3 is investigated in the present work. The presence of LiBH4 during the milling process noticeably modifies the size and morphology of the Mg agglomerates, leading to faster hydrogenation and reaching almost the theoretical hydrogen capacity owing to enhanced hydrogen diffusion mechanism. However, the dehydrogenation of the system at low temperatures (300 C) is still slow. Thus, FeF3 addition is proposed to improve the dehydrogenation kinetic behavior. From experimental results, it is found that the presence of FeF3 results in an additional size reduction of the Mg agglomerates between ~10 and ~100 mm and the formation of stable phases such as MgF2, LiF and FeB. The FeB species might have a catalytic effect upon the MgH2 decomposition. As a further result of the FeF3 addition, the Mge10 mol%LiBH4e5 mol% FeF3 material shows improved dehydrogenation properties: reduced dehydrogenation activation energy, faster hydrogen desorption rate and reversible hydrogen capacities of about 5 wt% at 275 C.Fil: Puszkiel, Julián Atilio. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Centre for Materials and Coastal Research; AlemaniaFil: Gennari, Fabiana Cristina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Arneodo Larochette, Pierre Paul. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Troiani, Horacio Esteban. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Karimi, Fahim. Centre for Materials and Coastal Research; AlemaniaFil: Pistidda, Claudio. Centre for Materials and Coastal Research; AlemaniaFil: Gosalawit e Utke, Rapee. Centre for Materials and Coastal Research; Alemania. Institute of Science, Suranaree University of Technology; TailandiaFil: Jepsen, Julian. Centre for Materials and Coastal Research; AlemaniaFil: Jensen, Torben R.. University of Aarhus; DinamarcaFil: Gundlach, Carsten. University of Aarhus; DinamarcaFil: Tolkiehn, Martin. HASYLAB at DES; AlemaniaFil: Bellosta von Colbe, José. Centre for Materials and Coastal Research; AlemaniaFil: Klassen, Thomas. Centre for Materials and Coastal Research; AlemaniaFil: Dornheim, Martin. Centre for Materials and Coastal Research; Alemani

    Cation occupancy in bimagnetic CoO-core/Co1−xZnxFe2O4-shell (x = 0-1) nanoparticles

    No full text
    In this work, we studied the cation occupancy of bimagnetic CoO/Co1−xZnxFe2O4 core/shell nanoparticles by means of X-ray absorption and Mössbauer spectroscopies, which provide element-sensitive information at the atomic scale. Our results indicate that, although the spinel ferrite forms a multi-grain shell, the Zn cations occupy solely tetrahedral sites, while the Co cations are mostly in the octahedral site. On the other hand, the Fe cations are distributed in both tetrahedral and octahedral sites for all concentrations. Also the results provide evidence for a Zn-deficient spinel with an excess of Co cations in the shell, whose origin is further rationalized in terms of the two-step synthesis process. In overall, this work gives a description of the cation occupancy in the core/shell nanoparticles and can serve as a guide to the interpretation of the magnetic properties of complex bimagnetic systems for future technological applications.Fil: Lavorato, Gabriel Carlos. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Saleta, Martin Eduardo. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Figueroa, S.J. A.. Brazilian Center for Research in Energy and Materials; BrasilFil: Tobia, Dina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Mauricio, J. C.. Centro Nacional de Pesquisa Em Energia E Materiais; BrasilFil: Lohr, Javier Hernán. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Baggio Saitovitch, E.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Troiani, Horacio Esteban. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Zysler, Roberto Daniel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Lima, Enio Junior. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Winkler, Elin Lilian. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentin
    corecore