116 research outputs found

    Is Primary Fixation with the Sliding Hip Screw Introduced into the Non-ideal Position Sufficient for Stable Pertrochanteric Fracture Stabilisation? A Biomechanical Evaluation and Experimental Study

    Get PDF
    Purpose: Proximal femoral fractures are most commonly sustained fractures in the elderly. The one of the current treatment option of stable pertrochanteric fracture is Sliding Hip Screw. The necessity of a repeat surgery, due to the failure of the first osteosynthesis, may jeopardize the patient's life. Common causes of a failure include: fracture pattern, implant position, implant's properties and the bone quality. Each screw position variant results in damage to various load-bearing bone structures during healing. The aim of this study was analysis of different screw positions with focuse on the risky position with the need of the intra-operative implant reintroduction.Methods: With the use of a numerical computational model and finite element methods, the authors analyzed five positions of Sliding Hip Screw in the proximal femur, with the objective of determining positions with an increased risk of failure. The ideal position was in the middle third of the femoral neck anchored subchondrally.Results: In model situations, it has been shown that in stable fractures the screw position in proximal third of the femoral neck significantly increased the strain of the plate and screw and may lead to the osteosynthesis failure. The other analysed positions do not significantly increase the risk of failure for entire fixation. Conclusions: It is not necessary to re-introduce Sliding Hip Screw into the ideal position (except placening in the proximal third of the neck) during the surgery. Damage to load-bearing structures relative to various implant placements does not impact the resultant overall fixation stability

    Diffusion of Mn interstitials in (Ga,Mn)As epitaxial layers

    Full text link
    Magnetic properties of thin (Ga,Mn)As layers improve during annealing by out-diffusion of interstitial Mn ions to a free surface. Out-diffused Mn atoms participate in the growth of a Mn-rich surface layer and a saturation of this layer causes an inhibition of the out-diffusion. We combine high-resolution x-ray diffraction with x-ray absorption spectroscopy and a numerical solution of the diffusion problem for the study of the out-diffusion of Mn interstitials during a sequence of annealing steps. Our data demonstrate that the out-diffusion of the interstitials is substantially affected by the internal electric field caused by an inhomogeneous distribution of charges in the (Ga,Mn)As layer.Comment: 11 pages, 5 figure

    Disc-oscillation resonance and neutron star QPOs: 3:2 epicyclic orbital model

    Full text link
    The high-frequency quasi-periodic oscillations (HF QPOs) that appear in the X-ray fluxes of low-mass X-ray binaries remain an unexplained phenomenon. Among other ideas, it has been suggested that a non-linear resonance between two oscillation modes in an accretion disc orbiting either a black hole or a neutron star plays a role in exciting the observed modulation. Several possible resonances have been discussed. A particular model assumes resonances in which the disc-oscillation modes have the eigenfrequencies equal to the radial and vertical epicyclic frequencies of geodesic orbital motion. This model has been discussed for black hole microquasar sources as well as for a group of neutron star sources. Assuming several neutron (strange) star equations of state and Hartle-Thorne geometry of rotating stars, we briefly compare the frequencies expected from the model to those observed. Our comparison implies that the inferred neutron star radius "RNS" is larger than the related radius of the marginally stable circular orbit "rms" for nuclear matter equations of state and spin frequencies up to 800Hz. For the same range of spin and a strange star (MIT) equation of state, the inferrred radius RNS is roughly equal to rms. The Paczynski modulation mechanism considered within the model requires that RNS < rms. However, we find this condition to be fulfilled only for the strange matter equation of state, masses below one solar mass, and spin frequencies above 800Hz. This result most likely falsifies the postulation of the neutron star 3:2 resonant eigenfrequencies being equal to the frequencies of geodesic radial and vertical epicyclic modes. We suggest that the 3:2 epicyclic modes could stay among the possible choices only if a fairly non-geodesic accretion flow is assumed, or if a different modulation mechanism operates.Comment: 7 pages, 4 figures (in colour), accepted for publication in Astronomy & Astrophysic

    Quasiperiodic oscillations in a strong gravitational field around neutron stars testing braneworld models

    Full text link
    The strong gravitational field of neutron stars in the brany universe could be described by spherically symmetric solutions with a metric in the exterior to the brany stars being of the Reissner-Nordstrom type containing a brany tidal charge representing the tidal effect of the bulk spacetime onto the star structure. We investigate the role of the tidal charge in orbital models of high-frequency quasiperiodic oscillations (QPOs) observed in neutron star binary systems. We focus on the relativistic precession model. We give the radial profiles of frequencies of the Keplerian (vertical) and radial epicyclic oscillations. We show how the standard relativistic precession model modified by the tidal charge fits the observational data, giving estimates of the allowed values of the tidal charge and the brane tension based on the processes going in the vicinity of neutron stars. We compare the strong field regime restrictions with those given in the weak-field limit of solar system experiments.Comment: 26 pages, 6 figure

    Anomalous Magnetoresistance by Breaking Ice Rule in Bi2Ir2O7/Dy2Ti2O7 Heterostructure

    Full text link
    While geometrically frustrated quantum magnets are known for a variety of exotic spin states that are of great interests of understanding emergent phenomena as well as enabling revolutionary quantum technologies, most of them are necessarily good insulators which are difficult to be integrated with modern electrical circuit that relies on moving charge carriers. The grand challenge of converting fluctuations and excitations of frustrated moments into electronic responses is finding ways to introduce charge carriers that interact with the localized spins without destroying the spin states. Here, we show that, by designing a Bi2Ir2O7/Dy2Ti2O7 heterostructure, the breaking of the spin ice rule in insulating Dy2Ti2O7 can lead to a charge response in the Bi2Ir2O7 conducting layer that can be detected as anomalous magnetoresistance. These results demonstrate a novel and feasible interfacial approach for electronically probing exotic spin states in insulating magnets, laying out a blueprint for the metallization of frustrated quantum magnets

    Farsighted Risk Mitigation of Lateral Movement Using Dynamic Cognitive Honeypots

    Full text link
    Lateral movement of advanced persistent threats has posed a severe security challenge. Due to the stealthy and persistent nature of the lateral movement, defenders need to consider time and spatial locations holistically to discover latent attack paths across a large time-scale and achieve long-term security for the target assets. In this work, we propose a time-expanded random network to model the stochastic service links in the user-host enterprise network and the adversarial lateral movement. We design cognitive honeypots at idle production nodes and disguise honey links as service links to detect and deter the adversarial lateral movement. The location of the honeypot changes randomly at different times and increases the honeypots' stealthiness. Since the defender does not know whether, when, and where the initial intrusion and the lateral movement occur, the honeypot policy aims to reduce the target assets' Long-Term Vulnerability (LTV) for proactive and persistent protection. We further characterize three tradeoffs, i.e., the probability of interference, the stealthiness level, and the roaming cost. To counter the curse of multiple attack paths, we propose an iterative algorithm and approximate the LTV with the union bound for computationally efficient deployment of cognitive honeypots. The results of the vulnerability analysis illustrate the bounds, trends, and a residue of LTV when the adversarial lateral movement has infinite duration. Besides honeypot policies, we obtain a critical threshold of compromisability to guide the design and modification of the current system parameters for a higher level of long-term security. We show that the target node can achieve zero vulnerability under infinite stages of lateral movement if the probability of movement deterrence is not less than the threshold

    Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte?

    Get PDF
    Algae with secondary plastids of a red algal origin, such as ochrophytes (photosynthetic stramenopiles), are diverse and ecologically important, yet their evolutionary history remains controversial. We sequenced plastid genomes of two ochrophytes, Ochromonas sp. CCMP1393 (Chrysophyceae) and Trachydiscus minutus (Eustigmatophyceae). A shared split of the clpC gene as well as phylogenomic analyses of concatenated protein sequences demonstrated that chrysophytes and eustigmatophytes form a clade, the Limnista, exhibiting an unexpectedly elevated rate of plastid gene evolution. Our analyses also indicate that the root of the ochrophyte phylogeny falls between the recently redefined Khakista and Phaeista assemblages. Taking advantage of the expanded sampling of plastid genome sequences, we revisited the phylogenetic position of the plastid of Vitrella brassicaformis, a member of Alveolata with the least derived plastid genome known for the whole group. The results varied depending on the dataset and phylogenetic method employed, but suggested that the Vitrella plastids emerged from a deep ochrophyte lineage rather than being derived vertically from a hypothetical plastid-bearing common ancestor of alveolates and stramenopiles. Thus, we hypothesize that the plastid in Vitrella, and potentially in other alveolates, may have been acquired by an endosymbiosis of an early ochrophyte

    Divergence across mitochondrial genomes of sympatric members of the Schistosoma indicum group and clues into the evolution of Schistosoma spindale

    Get PDF
    Schistosoma spindale and Schistosoma indicum are ruminant-infecting trematodes of the Schistosoma indicum group that are widespread across Southeast Asia. Though neglected, these parasites can cause major pathology and mortality to livestock leading to significant welfare and socio-economic issues, predominantly amongst poor subsistence farmers and their families. Here we used mitogenomic analysis to determine the relationships between these two sympatric species of schistosome and to characterise S. spindale diversity in order to identify possible cryptic speciation. The mitochondrial genomes of S. spindale and S. indicum were assembled and genetic analyses revealed high levels of diversity within the S. indicum group. Evidence of functional changes in mitochondrial genes indicated adaptation to environmental change associated with speciation events in S. spindale around 2.5 million years ago. We discuss our results in terms of their theoretical and applied implications

    Influence of 'Trichobilharzia regenti' (Digenea: Schistosomatidae) on the defence activity of 'Radix lagotis' (Lymnaeidae) haemocytes

    Get PDF
    Radix lagotis is an intermediate snail host of the nasal bird schistosome Trichobilharzia regenti. Changes in defence responses in infected snails that might be related to host-parasite compatibility are not known. This study therefore aimed to characterize R. lagotis haemocyte defence mechanisms and determine the extent to which they are modulated by T. regenti. Histological observations of R. lagotis infected with T. regenti revealed that early phases of infection were accompanied by haemocyte accumulation around the developing larvae 2–36 h post exposure (p.e.) to the parasite. At later time points, 44–92 h p.e., no haemocytes were observed around T. regenti. Additionally, microtubular aggregates likely corresponding to phagocytosed ciliary plates of T. regenti miracidia were observed within haemocytes by use of transmission electron microscopy. When the infection was in the patent phase, haemocyte phagocytic activity and hydrogen peroxide production were significantly reduced in infected R. lagotis when compared to uninfected counterparts, whereas haemocyte abundance increased in infected snails. At a molecular level, protein kinase C (PKC) and extracellular-signal regulated kinase (ERK) were found to play an important role in regulating these defence reactions in R. lagotis. Moreover, haemocytes from snails with patent infection displayed lower PKC and ERK activity in cell adhesion assays when compared to those from uninfected snails, which may therefore be related to the reduced defence activities of these cells. These data provide the first integrated insight into the immunobiology of R. lagotis and demonstrate modulation of haemocyte-mediated responses in patent T. regenti infected snails. Given that immunomodulation occurs during patency, interference of snail-host defence by T. regenti might be important for the sustained production and/or release of infective cercariae
    • 

    corecore