32 research outputs found
First-Year Spectroscopy for the SDSS-II Supernova Survey
This paper presents spectroscopy of supernovae discovered in the first season
of the Sloan Digital Sky Survey-II Supernova Survey. This program searches for
and measures multi-band light curves of supernovae in the redshift range z =
0.05 - 0.4, complementing existing surveys at lower and higher redshifts. Our
goal is to better characterize the supernova population, with a particular
focus on SNe Ia, improving their utility as cosmological distance indicators
and as probes of dark energy. Our supernova spectroscopy program features
rapid-response observations using telescopes of a range of apertures, and
provides confirmation of the supernova and host-galaxy types as well as precise
redshifts. We describe here the target identification and prioritization, data
reduction, redshift measurement, and classification of 129 SNe Ia, 16
spectroscopically probable SNe Ia, 7 SNe Ib/c, and 11 SNe II from the first
season. We also describe our efforts to measure and remove the substantial host
galaxy contamination existing in the majority of our SN spectra.Comment: Accepted for publication in The Astronomical Journal(47pages, 9
figures
Increased circulation time of Plasmodium falciparum underlies persistent asymptomatic infection in the dry season
The dry season is a major challenge for Plasmodium falciparum parasites in many malaria endemic regions, where water availability limits mosquito vectors to only part of the year. How P. falciparum bridges two transmission seasons months apart, without being cleared by the human host or compromising host survival, is poorly understood. Here we show that low levels of P. falciparum parasites persist in the blood of asymptomatic Malian individuals during the 5- to 6-month dry season, rarely causing symptoms and minimally affecting the host immune response. Parasites isolated during the dry season are transcriptionally distinct from those of individuals with febrile malaria in the transmission season, coinciding with longer circulation within each replicative cycle of parasitized erythrocytes without adhering to the vascular endothelium. Low parasite levels during the dry season are not due to impaired replication but rather to increased splenic clearance of longer-circulating infected erythrocytes, which likely maintain parasitemias below clinical and immunological radar. We propose that P. falciparum virulence in areas of seasonal malaria transmission is regulated so that the parasite decreases its endothelial binding capacity, allowing increased splenic clearance and enabling several months of subclinical parasite persistence
Recurrent Signature Patterns in HIV-1 B Clade Envelope Glycoproteins Associated with either Early or Chronic Infections
Here we have identified HIV-1 B clade Envelope (Env) amino acid signatures from early in infection that may be favored at transmission, as well as patterns of recurrent mutation in chronic infection that may reflect common pathways of immune evasion. To accomplish this, we compared thousands of sequences derived by single genome amplification from several hundred individuals that were sampled either early in infection or were chronically infected. Samples were divided at the outset into hypothesis-forming and validation sets, and we used phylogenetically corrected statistical strategies to identify signatures, systematically scanning all of Env. Signatures included single amino acids, glycosylation motifs, and multi-site patterns based on functional or structural groupings of amino acids. We identified signatures near the CCR5 co-receptor-binding region, near the CD4 binding site, and in the signal peptide and cytoplasmic domain, which may influence Env expression and processing. Two signatures patterns associated with transmission were particularly interesting. The first was the most statistically robust signature, located in position 12 in the signal peptide. The second was the loss of an N-linked glycosylation site at positions 413β415; the presence of this site has been recently found to be associated with escape from potent and broad neutralizing antibodies, consistent with enabling a common pathway for immune escape during chronic infection. Its recurrent loss in early infection suggests it may impact fitness at the time of transmission or during early viral expansion. The signature patterns we identified implicate Env expression levels in selection at viral transmission or in early expansion, and suggest that immune evasion patterns that recur in many individuals during chronic infection when antibodies are present can be selected against when the infection is being established prior to the adaptive immune response