862 research outputs found

    Three-Body Dynamics with Gravitational Wave Emission

    Full text link
    We present numerical three-body experiments that include the effects of gravitational radiation reaction by using equations of motion that include the 2.5-order post-Newtonian force terms, which are the leading order terms of energy loss from gravitational waves. We simulate binary-single interactions and show that close approach cross sections for three 1 solar mass objects are unchanged from the purely Newtonian dynamics except for close approaches smaller than 1.0e-5 times the initial semimajor axis of the binary. We also present cross sections for mergers resulting from gravitational radiation during three-body encounters for a range of binary semimajor axes and mass ratios including those of interest for intermediate-mass black holes (IMBHs). Building on previous work, we simulate sequences of high-mass-ratio three-body encounters that include the effects of gravitational radiation. The simulations show that the binaries merge with extremely high eccentricity such that when the gravitational waves are detectable by LISA, most of the binaries will have eccentricities e > 0.9 though all will have circularized by the time they are detectable by LIGO. We also investigate the implications for the formation and growth of IMBHs and find that the inclusion of gravitational waves during the encounter results in roughly half as many black holes ejected from the host cluster for each black hole accreted onto the growing IMBH.Comment: 34 pages, 14 figures, minor corrections to match version accepted by Ap

    Simulations of Extreme-Mass-Ratio Inspirals Using Pseudospectral Methods

    Full text link
    Extreme-mass-ratio inspirals (EMRIs), stellar-mass compact objects (SCOs) inspiralling into a massive black hole, are one of the main sources of gravitational waves expected for the Laser Interferometer Space Antenna (LISA). To extract the EMRI signals from the expected LISA data stream, which will also contain the instrumental noise as well as other signals, we need very accurate theoretical templates of the gravitational waves that they produce. In order to construct those templates we need to account for the gravitational backreaction, that is, how the gravitational field of the SCO affects its own trajectory. In general relativity, the backreaction can be described in terms of a local self-force, and the foundations to compute it have been laid recently. Due to its complexity, some parts of the calculation of the self-force have to be performed numerically. Here, we report on an ongoing effort towards the computation of the self-force based on time-domain multi-grid pseudospectral methods.Comment: 6 pages, 4 figures, JPCS latex style. Submitted to JPCS (special issue for the proceedings of the 7th International LISA Symposium

    The impact of realistic models of mass segregation on the event rate of extreme-mass ratio inspirals and cusp re-growth

    Full text link
    One of the most interesting sources of gravitational waves (GWs) for LISA is the inspiral of compact objects on to a massive black hole (MBH), commonly referred to as an "extreme-mass ratio inspiral" (EMRI). The small object, typically a stellar black hole (bh), emits significant amounts of GW along each orbit in the detector bandwidth. The slowly, adiabatic inspiral of these sources will allow us to map space-time around MBHs in detail, as well as to test our current conception of gravitation in the strong regime. The event rate of this kind of source has been addressed many times in the literature and the numbers reported fluctuate by orders of magnitude. On the other hand, recent observations of the Galactic center revealed a dearth of giant stars inside the inner parsec relative to the numbers theoretically expected for a fully relaxed stellar cusp. The possibility of unrelaxed nuclei (or, equivalently, with no or only a very shallow cusp) adds substantial uncertainty to the estimates. Having this timely question in mind, we run a significant number of direct-summation NN-body simulations with up to half a million particles to calibrate a much faster orbit-averaged Fokker-Planck code. We then investigate the regime of strong mass segregation (SMS) for models with two different stellar mass components. We show that, under quite generic initial conditions, the time required for the growth of a relaxed, mass segregated stellar cusp is shorter than a Hubble time for MBHs with M5×106MM_\bullet \lesssim 5 \times 10^6 M_\odot (i.e. nuclei in the range of LISA). SMS has a significant impact boosting the EMRI rates by a factor of 10\sim 10 for our fiducial models of Milky Way type galactic nuclei.Comment: Accepted by CQG, minor changes, a bit expande

    Understanding the importance of transient resonances in extreme mass ratio inspirals

    Get PDF
    Extreme mass ratio inspirals (EMRIs) occur when a compact object orbits a much larger one, like a solar-mass black hole around a supermassive black hole. The orbit has 3 frequencies which evolve through the inspiral. If the orbital radial frequency and polar frequency become commensurate, the system passes through a transient resonance. Evolving through resonance causes a jump in the evolution of the orbital parameters. We study these jumps and their impact on EMRI gravitational-wave detection. Jumps are smaller for lower eccentricity orbits; since most EMRIs have small eccentricities when passing through resonances, we expect that the impact on detection will be small. Neglecting the effects of transient resonances leads to a loss of ~4% of detectable signals for an astrophysically motivated population of EMRIs.Comment: 2 pages, 0 figures; to appear in the proceedings of the 11th International LISA Symposiu

    Probing Stellar Dynamics in Galactic Nuclei

    No full text
    Electromagnetic observations over the last 15 years have yielded a growing appreciation for the importance of supermassive black holes (SMBH) to the evolution of galaxies, and for the intricacies of dynamical interactions in our own Galactic center. Here we show that future low-frequency gravitational wave observations, alone or in combination with electromagnetic data, will open up unique windows to these processes. In particular, gravitational wave detections in the 10^{-5}-10^{-1} Hz range will yield SMBH masses and spins to unprecedented precision and will provide clues to the properties of the otherwise undetectable stellar remnants expected to populate the centers of galaxies. Such observations are therefore keys to understanding the interplay between SMBHs and their environments

    A symmetry-preserving second-order time-accurate PISO-based method

    Get PDF
    A new conservative symmetry-preserving second-order time-accurate PISO-based pressure-velocity coupling for solving the incompressible Navier-Stokes equations on unstructured collocated grids is presented in this paper. This new method for implicit time stepping is an extension of the conservative symmetry-preserving incremental-pressure projection method for explicit time stepping and unstructured collocated meshes of Trias et al. [35]. In order to assess and compare both methods, we have implemented them within one unified solver in the open source code OpenFOAM where we use a Butcher array to prescribe the Runge-Kutta method. Thus, by changing the entries of the Butcher array, explicit and diagonally implicit Runge-Kutta schemes can be combined into one solver. We assess the energy conservation properties of the implemented discretisation methods and the temporal consistency of the selected Runge-Kutta schemes using Taylor-Green vortex and lid-driven cavity flow test cases. Finally, we use a more complex turbulent channel flow test case in order to further assess the performance of the presented new conservative symmetry-preserving incremental-pressure PISO-based method. Although both implemented methods are based on a symmetry-preserving discretisation, we show they still produce a small amount of numerical dissipation when the total pressure is directly solved from a Poisson equation. When an incremental-pressure approach is used, where a pressure correction is solved from a Poisson equation, both methods are effectively fully-conservative. For high-fidelity simulations of incompressible turbulent flows, it is highly desirable to use fully-conservative methods. For such simulations, the presented numerical methods are therefore expected to have large added value, since they pave the way for the execution of truly energy-conservative high-fidelity simulations in complex geometries. Furthermore, both methods are implemented in OpenFOAM, which is widely used within the CFD community, so that a large part of this community can benefit from the developed and implemented numerical methods

    Stellar Dynamics and Black Holes

    Full text link
    Chandrasekhar's most important contribution to stellar dynamics was the concept of dynamical friction. I briefly review that work, then discuss some implications of Chandrasekhar's theory of gravitational encounters for motion in galactic nuclei.Comment: Talk presented at the "Chandrasekhar Centenary Conference" (2010

    Constraining properties of the black hole population using LISA

    Get PDF
    LISA should detect gravitational waves from tens to hundreds of systems containing black holes with mass in the range from 10 thousand to 10 million solar masses. Black holes in this mass range are not well constrained by current electromagnetic observations, so LISA could significantly enhance our understanding of the astrophysics of such systems. In this paper, we describe a framework for combining LISA observations to make statements about massive black hole populations. We summarise the constraints that LISA observations of extreme-mass-ratio inspirals might be able to place on the mass function of black holes in the LISA range. We also describe how LISA observations can be used to choose between different models for the hierarchical growth of structure in the early Universe. We consider four models that differ in their prescription for the initial mass distribution of black hole seeds, and in the efficiency of accretion onto the black holes. We show that with as little as 3 months of LISA data we can clearly distinguish between these models, even under relatively pessimistic assumptions about the performance of the detector and our knowledge of the gravitational waveforms.Comment: 12 pages, 3 figures, submitted to Class. Quantum Grav. for proceedings of 8th LISA Symposium; v2 minor changes for consistency with accepted versio

    Impact of lifelong exercise training on endothelial ischemia-reperfusion and ischemic preconditioning in humans.

    Get PDF
    Reperfusion is essential for ischemic tissue survival, but causes additional damage to the endothelium (i.e. ischemia-reperfusion [IR] injury). Ischemic preconditioning (IPC) refers to short repetitive episodes of ischemia that can protect against IR. However, IPC efficacy attenuates with older age. Whether physical inactivity contributes to the attenuated efficacy of IPC to protect against IR injury in older humans is unclear. We tested the hypotheses that lifelong exercise training relates to 1) attenuated endothelial IR and 2) maintained IPC efficacy that protects veteran athletes against endothelial IR. In 18 sedentary male individuals (SED, 20 years, 63±7 years) and 20 veteran male athletes (ATH, >5 exercise hours/week for >20 years, 63±6 years), we measured brachial artery endothelial function with flow-mediated dilation (FMD) before and after IR. We induced IR by 20-minutes of ischemia followed by 20-minutes of reperfusion. Randomized over 2 days, participants underwent either 35-minute rest or IPC (3 cycles of 5-minutes cuff inflation to 220 mmHg with 5-minutes of rest) before IR. In SED, FMD decreased after IR (median [interquartile range]): (3.0% [2.0-4.7] to 2.1% [1.5-3.9], P=0.046) and IPC did not prevent this decline (4.1% [2.6-5.2] to 2.8% [2.2-3.6],P=0.012). In ATH, FMD was preserved after IR (3.0% [1.7-5.4] to 3.0% [1.9-4.1], P=0.82) and when IPC preceded IR (3.2% [1.9-4.2] to 2.8% [1.4-4.6],P=0.18). These findings indicate that lifelong exercise training is associated with increased tolerance against endothelial IR. These protective, preconditioning effects of lifelong exercise against endothelial ischemia-reperfusion may contribute to the cardio-protective effects of exercise training

    Rapid generation of chromosome-specific alphoid DNA probes using the polymerase chain reaction

    Get PDF
    Non-isotopic in situ hybridization of chromosome-specific alphoid DNA probes has become a potent tool in the study of numerical aberrations of specific human chromosomes at all stages of the cell cycle. In this paper, we describe approaches for the rapid generation of such probes using the polymerase chain reaction (PCR), and demonstrate their chromosome specificity by fluorescence in situ hybridization to normal human metaphase spreads and interphase nuclei. Oligonucleotide primers for conserved regions of the alpha satellite monomer were used to generate chromosome-specific DNA probes from somatic hybrid cells containing various human chromosomes, and from DNA libraries from sorted human chromosomes. Oligonucleotide primers for chromosome-specific regions of the alpha satellite monomer were used to generate specific DNA probes for the pericentromeric heterochromatin of human chromosomes 1, 6, 7, 17 and X directly from human genomic DNA
    corecore