11,520 research outputs found

    Galaxy disks do not need to survive in the L-CDM paradigm: the galaxy merger rate out to z~1.5 from morpho-kinematic data

    Full text link
    About two-thirds of present-day, large galaxies are spirals such as the Milky Way or Andromeda, but the way their thin rotating disks formed remains uncertain. Observations have revealed that half of their progenitors, six billion years ago, had peculiar morphologies and/or kinematics, which exclude them from the Hubble sequence. Major mergers, i.e., fusions between galaxies of similar mass, are found to be the likeliest driver for such strong peculiarities. However, thin disks are fragile and easily destroyed by such violent collisions, which creates a critical tension between the observed fraction of thin disks and their survival within the L-CDM paradigm. Here we show that the observed high occurrence of mergers amongst their progenitors is only apparent and is resolved when using morpho-kinematic observations which are sensitive to all the phases of the merging process. This provides an original way of narrowing down observational estimates of the galaxy merger rate and leads to a perfect match with predictions by state-of-the-art L-CDM semi-empirical models with no particular fine-tuning needed. These results imply that half of local thin disks do not survive but are actually rebuilt after a gas-rich major merger occurring in the past nine billion years, i.e., two-thirds of the lifetime of the Universe. This emphasizes the need to study how thin disks can form in halos with a more active merger history than previously considered, and to investigate what is the origin of the gas reservoir from which local disks would reform.Comment: 19 pages, 7 figures, 2 tables. Accepted in ApJ. V2 to match proof corrections and added reference

    Microjansky sources at 1.4 GHz

    Get PDF
    We present a deep 1.4 GHz survey made with the Australia Telescope Compact Array (ATCA), having a background RMS of 9 microJy near the image phase centre, up to 25 microJy at the edge of a 50' field of view. Over 770 radio sources brighter than 45 microJy have been catalogued in the field. The differential source counts in the deep field provide tentative support for the growing evidence that the microjansky radio population exhibits significantly higher clustering than found at higher flux density cutoffs. The optical identification rate on CCD images is approximately 50% to R=22.5, and the optical counterparts of the faintest radio sources appear to be mainly single galaxies close to this optical magnitude limit.Comment: 6 pages, 4 figures, accepted by ApJ Letters 4 May 199

    A Theoretical Interpretation of the Black Hole Fundamental Plane

    Full text link
    We examine the origin and evolution of correlations between properties of supermassive black holes (BHs) and their host galaxies using simulations of major galaxy mergers, including the effects of gas dissipation, cooling, star formation, and BH accretion and feedback. We demonstrate that the simulations predict the existence of a BH 'fundamental plane' (BHFP), of the form M_BH sigma^(3.0+-0.3)*R_e^(0.43+-0.19) or M_BH M_bulge^(0.54+-0.17)*sigma^(2.2+-0.5), similar to relations found observationally. The simulations indicate that the BHFP can be understood roughly as a tilted intrinsic correlation between BH mass and spheroid binding energy, or the condition for feedback coupling to power a pressure-driven outflow. While changes in halo circular velocity, merger orbital parameters, progenitor disk redshifts and gas fractions, ISM gas pressurization, and other parameters can drive changes in e.g. sigma at fixed M_bulge, and therefore changes in the M_BH-sigma or M_BH-M_bulge relations, the BHFP is robust. Given the empirical trend of decreasing R_e for a given M_bulge at high redshift, the BHFP predicts that BHs will be more massive at fixed M_bulge, in good agreement with recent observations. This evolution in the structural properties of merger remnants, to smaller R_e and larger sigma (and therefore larger M_BH, conserving the BHFP) at a given M_bulge, is driven by the fact that bulge progenitors have characteristically larger gas fractions at high redshifts. Adopting the observed evolution of disk gas fractions with redshift, our simulations predict the observed trends in both R_e(M_bulge) and M_BH(M_bulge).Comment: 22 pages, 19 figures, replaced with version accepted to ApJ. Companion paper to arXiv:0707.400

    The AGORA High-resolution Galaxy Simulations Comparison Project. II. Isolated Disk Test

    Get PDF
    Using an isolated Milky Way-mass galaxy simulation, we compare results from nine state-of-the-art gravito-hydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e.g., radiative cooling and UV background by the standardized package Grackle) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, we find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt–Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly formed stellar clump mass functions show more significant variation (difference by up to a factor of ~3). Systematic differences exist, for example, between mesh-based and particle-based codes in the low-density region, and between more diffusive and less diffusive schemes in the high-density tail of the density distribution. Yet intrinsic code differences are generally small compared to the variations in numerical implementations of the common subgrid physics such as supernova feedback. Our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes

    Repetitive Segmental Structure of the Transducin β Subunit: Homology with the CDC4 Gene and Identification of Related mRNAs

    Get PDF
    Retinal transducin, a guanine nucleotide regulatory protein (referred to as a G protein) that activates a cGMP phosphodiesterase in photoreceptor cells, is comprised of three subunits. We have identified and analyzed cDNA clones of the bovine transducin β subunit that may be highly conserved or identical to that in other G proteins. From the cDNA nucleotide sequence of the entire coding region, the primary structure of a 340-amino acid protein was deduced. The encoded β subunit has a Mr of 37,375 and is comprised of repetitive homologous segments arranged in tandem. Furthermore, significant homology in primary structure and segmental sequence exists between the β subunit and the yeast CDC4 gene product. The Mr 37,375 β subunit polypeptide is encoded by a 2.9-kilobase (kb) mRNA. However, there exists in retina other β-related mRNAs that are divergent from the 2.9-kb mRNA on the basis of oligonucleotide and primer-extended probe hybridizations. All mammalian tissues and clonal cell lines that have been examined contain at least two β-related mRNAs, usually 1.8 and 2.9 kb in length. These results suggest that the mRNAs are the processed products of a small number of closely related genes or of a single highly complex β gene

    Cluster Alignments and Ellipticities in LCDM Cosmology

    Full text link
    The ellipticities and alignments of clusters of galaxies, and their evolution with redshift, are examined in the context of a Lambda-dominated cold dark matter cosmology. We use a large-scale, high-resolution N-body simulation to model the matter distribution in a light cone containing ~10^6 clusters out to redshifts of z=3. Cluster ellipticities are determined as a function of mass, radius, and redshift, both in 3D and in projection. We find strong cluster ellipticities: the mean ellipticity increases with redshift from 0.3 at z=0 to 0.5 at z=3, for both 3D and 2D ellipticities; the evolution is well-fit by e=0.33+0.05z. The ellipticities increase with cluster mass and with cluster radius; the main cluster body is more elliptical than the cluster cores, but the increase of ellipticities with redshift is preserved. Using the fitted cluster ellipsoids, we determine the alignment of clusters as a function of their separation. We find strong alignment of clusters for separations <100 Mpc/h; the alignment increases with decreasing separation and with increasing redshift. The evolution of clusters from highly aligned and elongated systems at early times to lower alignment and elongation at present reflects the hierarchical and filamentary nature of structure formation. These measures of cluster ellipticity and alignment will provide a new test of the current cosmological model when compared with upcoming cluster surveys.Comment: 29 pages including 13 figures, to appear in ApJ Jan. 2005 (corrected typos, added reference

    Properties of the circumgalactic medium in cosmic ray-dominated galaxy haloes

    Get PDF
    We investigate the impact of cosmic rays (CRs) on the circumgalactic medium (CGM) in FIRE-2 simulations, for ultra-faint dwarf through Milky Way (MW)-mass haloes hosting star-forming (SF) galaxies. Our CR treatment includes injection by supernovae, anisotropic streaming and diffusion along magnetic field lines, and collisional and streaming losses, with constant parallel diffusivity κ∼3×10²⁹ cm² s⁻¹ chosen to match γ-ray observations. With this, CRs become more important at larger halo masses and lower redshifts, and dominate the pressure in the CGM in MW-mass haloes at z ≲ 1–2. The gas in these ‘CR-dominated’ haloes differs significantly from runs without CRs: the gas is primarily cool (a few ∼10⁴), and the cool phase is volume-filling and has a thermal pressure below that needed for virial or local thermal pressure balance. Ionization of the ‘low’ and ‘mid’ ions in this diffuse cool gas is dominated by photoionization, with O VI columns ≳10^(14.5) cm⁻² at distances ≳150kpc⁠. CR and thermal gas pressure are locally anticorrelated, maintaining total pressure balance, and the CGM gas density profile is determined by the balance of CR pressure gradients and gravity. Neglecting CRs, the same haloes are primarily warm/hot (⁠T≳10⁵) with thermal pressure balancing gravity, collisional ionization dominates, O VI columns are lower and Ne VIII higher, and the cool phase is confined to dense filaments in local thermal pressure equilibrium with the hot phase

    The Star Formation Rate in the Reionization Era as Indicated by Gamma-ray Bursts

    Full text link
    High-redshift gamma-ray bursts (GRBs) offer an extraordinary opportunity to study aspects of the early Universe, including the cosmic star formation rate (SFR). Motivated by the two recent highest-z GRBs, GRB 080913 at z = 6.7 and GRB 090423 at z = 8.1, and more than four years of Swift observations, we first confirm that the GRB rate does not trace the SFR in an unbiased way. Correcting for this, we find that the implied SFR to beyond z = 8 is consistent with LBG-based measurements after accounting for unseen galaxies at the faint end of the UV luminosity function. We show that this provides support for the integrated star formation in the range 6 < z < 8 to have been alone sufficient to reionize the Universe.Comment: 4 pages, 4 figures; modified to match version accepted for publication in ApJ Letter
    corecore