95 research outputs found

    Chronic arsenic exposure and risk of infant mortality in two areas of Chile.

    Get PDF
    Chronic arsenic exposure has been associated with a range of neurologic, vascular, dermatologic, and carcinogenic effects. However, limited research has been directed at the association of arsenic exposure and human reproductive health outcomes. The principal aim of this study was to investigate the trends in infant mortality between two geographic locations in Chile: Antofagasta, which has a well-documented history of arsenic exposure from naturally contaminated water, and ValparaĂ­so, a comparable low-exposure city. The arsenic concentration in Antofagasta's public drinking water supply rose substantially in 1958 with the introduction of a new water source, and remained elevated until 1970. We used a retrospective study design to examine time and location patterns in infant mortality between 1950 and 1996, using univariate statistics, graphical techniques, and Poisson regression analysis. Results of the study document the general declines in late fetal and infant mortality over the study period in both locations. The data also indicate an elevation of the late fetal, neonatal, and postneonatal mortality rates for Antofagasta, relative to ValparaĂ­so, for specific time periods, which generally coincide with the period of highest arsenic concentration in the drinking water of Antofagasta. Poisson regression analysis yielded an elevated and significant association between arsenic exposure and late fetal mortality [rate ratio (RR) = 1.7; 95% confidence interval (CI), 1.5-1.9], neonatal mortality (RR = 1.53; CI, 1.4-1.7), and postneonatal mortality (RR = 1.26; CI, 1.2-1.3) after adjustment for location and calendar time. The findings from this investigation may support a role for arsenic exposure in increasing the risk of late fetal and infant mortality

    Arsenic methylation patterns before and after changing from high to lower concentrations of arsenic in drinking water.

    Get PDF
    Inorganic arsenic (In-As), an occupational and environmental human carcinogen, undergoes biomethylation to monomethylarsonate (MMA) and dimethylarsinate (DMA). It has been proposed that saturation of methylation capacity at high exposure levels may lead to a threshold for the carcinogenicity of In-As. The relative distribution of urinary In-As, MMA, and DMA is used as a measure of human methylation capacity. The most common pathway for elevated environmental exposure to In-As worldwide is through drinking water. We conducted a biomarker study in northern Chile of a population chronically exposed to water naturally contaminated with high arsenic content (600 micrograms/l). In this paper we present the results of a prospective follow-up of 73 exposed individuals, who were provided with water of lower arsenic content (45 micrograms/l) for 2 months. The proportions of In-As, MMA, and DMA in urine were compared before and after intervention, and the effect of other factors on the distribution of arsenic metabolites was also analyzed. The findings of this study indicate that the decrease in arsenic exposure was associated with a small decrease in the percent In-As in urine (from 17.8% to 14.6%) and in the MMA/DMA ratio (from 0.23 to 0.18). Other factors such as smoking, gender, age, years of residence, and ethnicity were associated mainly with changes in the MMA/DMA ratio, with smoking having the strongest effect. Nevertheless, the factors investigated accounted for only about 20% of the large interindividual variability observed. Genetic polymorphisms in As-methylating enzymes and other co-factors are likely to contribute to some of the unexplained variation. The changes observed in the percent In-As and in the MMA/DMA ratio do not support an exposure-based threshold for arsenic methylation in humans

    Methylation study of a population environmentally exposed to arsenic in drinking water.

    Get PDF
    Methylation is considered the detoxification pathway for inorganic arsenic (InAs), an established human carcinogen. Urinary speciation analysis is used to assess the distribution of metabolites [monomethylarsonate (MMA), dimethylarsinate (DMA), and unmethylated arsenic (InAs)], as indicators of methylation capacity. We conducted a large biomarker study in northern Chile of a population chronically exposed to high levels of arsenic in drinking water. We report the results of the methylation study, which focused on the effects of exposure and other variables on the percent InAs, MMA, DMA, and the ratio of MMA to DMA in urine. The study consisted of 122 people in a town with arsenic water levels around 600 micrograms/l and 98 participants in a neighboring town with arsenic levels in water of about 15 micrograms/l. The corresponding mean urinary arsenic levels were 580 micrograms/l and 60 micrograms/l, of which 18.4% and 14.9% were InAs, respectively. The main differences were found for MMA:DMA; exposure, smoking, and being male were associated with higher MMA:DMA, while longer residence, Atacameño ethnicity, and being female were associated with lower MMA:DMA. Together, these variables explained about 30% of the variability in MMA:DMA. Overall, there was no evidence of a threshold for methylation capacity, even at very high exposures, and the interindividual differences were within a much wider range than those attributed to the variables investigated. The differences in percent InAs were small and within the ranges of other studies of background exposure levels. The biological significance of MMA:DMA, which was more than 1.5 times greater in the exposed group, and its relationship to sex, length of exposure, and ethnicity need further investigation because its relevance to health risk is not clear

    Effects of Low-Dose Drinking Water Arsenic on Mouse Fetal and Postnatal Growth and Development

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 7 (2012): e38249, doi:10.1371/journal.pone.0038249.Arsenic (As) exposure is a significant worldwide environmental health concern. Chronic exposure via contaminated drinking water has been associated with an increased incidence of a number of diseases, including reproductive and developmental effects. The goal of this study was to identify adverse outcomes in a mouse model of early life exposure to low-dose drinking water As (10 ppb, current U.S. EPA Maximum Contaminant Level). C57B6/J pups were exposed to 10 ppb As, via the dam in her drinking water, either in utero and/or during the postnatal period. Birth outcomes, the growth of the F1 offspring, and health of the dams were assessed by a variety of measurements. Birth outcomes including litter weight, number of pups, and gestational length were unaffected. However, exposure during the in utero and postnatal period resulted in significant growth deficits in the offspring after birth, which was principally a result of decreased nutrients in the dam's breast milk. Cross-fostering of the pups reversed the growth deficit. Arsenic exposed dams displayed altered liver and breast milk triglyceride levels and serum profiles during pregnancy and lactation. The growth deficits in the F1 offspring resolved following separation from the dam and cessation of exposure in male mice, but did not resolve in female mice up to six weeks of age. Exposure to As at the current U.S. drinking water standard during critical windows of development induces a number of adverse health outcomes for both the dam and offspring. Such effects may contribute to the increased disease risks observed in human populations.This work was supported by National Institute of Environmental Health Sciences at the National Institutes of Health grants 1F32 ES019070 (CDK-H) and P42 ES007373 (BPJ, JWH, RIE and CDK-H, Dartmouth Superfund Research Program Project Grant, Project 2 and Pilot Project)

    Age adjustment in ecological studies: using a study on arsenic ingestion and bladder cancer as an example

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite its limitations, ecological study design is widely applied in epidemiology. In most cases, adjustment for age is necessary, but different methods may lead to different conclusions. To compare three methods of age adjustment, a study on the associations between arsenic in drinking water and incidence of bladder cancer in 243 townships in Taiwan was used as an example.</p> <p>Methods</p> <p>A total of 3068 cases of bladder cancer, including 2276 men and 792 women, were identified during a ten-year study period in the study townships. Three methods were applied to analyze the same data set on the ten-year study period. The first (Direct Method) applied direct standardization to obtain standardized incidence rate and then used it as the dependent variable in the regression analysis. The second (Indirect Method) applied indirect standardization to obtain standardized incidence ratio and then used it as the dependent variable in the regression analysis instead. The third (Variable Method) used proportions of residents in different age groups as a part of the independent variables in the multiple regression models.</p> <p>Results</p> <p>All three methods showed a statistically significant positive association between arsenic exposure above 0.64 mg/L and incidence of bladder cancer in men and women, but different results were observed for the other exposure categories. In addition, the risk estimates obtained by different methods for the same exposure category were all different.</p> <p>Conclusions</p> <p>Using an empirical example, the current study confirmed the argument made by other researchers previously that whereas the three different methods of age adjustment may lead to different conclusions, only the third approach can obtain unbiased estimates of the risks. The third method can also generate estimates of the risk associated with each age group, but the other two are unable to evaluate the effects of age directly.</p

    Cancer risks from arsenic in drinking water.

    Get PDF
    Ingestion of arsenic, both from water supplies and medicinal preparations, is known to cause skin cancer. The evidence assessed here indicates that arsenic can also cause liver, lung, kidney, and bladder cancer and that the population cancer risks due to arsenic in U.S. water supplies may be comparable to those from environmental tobacco smoke and radon in homes. Large population studies in an area of Taiwan with high arsenic levels in well water (170-800 micrograms/L) were used to establish dose-response relationships between cancer risks and the concentration of inorganic arsenic naturally present in water supplies. It was estimated that at the current EPA standard of 50 micrograms/L, the lifetime risk of dying from cancer of the liver, lung, kidney, or bladder from drinking 1 L/day of water could be as high as 13 per 1000 persons. It has been estimated that more than 350,000 people in the United States may be supplied with water containing more than 50 micrograms/L arsenic, and more than 2.5 million people may be supplied with water with levels above 25 micrograms/L. For average arsenic levels and water consumption patterns in the United States, the risk estimate was around 1/1000. Although further research is needed to validate these findings, measures to reduce arsenic levels in water supplies should be considered

    Mathematical model insights into arsenic detoxification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Arsenic in drinking water, a major health hazard to millions of people in South and East Asia and in other parts of the world, is ingested primarily as trivalent inorganic arsenic (iAs), which then undergoes hepatic methylation to methylarsonic acid (MMAs) and a second methylation to dimethylarsinic acid (DMAs). Although MMAs and DMAs are also known to be toxic, DMAs is more easily excreted in the urine and therefore methylation has generally been considered a detoxification pathway. A collaborative modeling project between epidemiologists, biologists, and mathematicians has the purpose of explaining existing data on methylation in human studies in Bangladesh and also testing, by mathematical modeling, effects of nutritional supplements that could increase As methylation.</p> <p>Methods</p> <p>We develop a whole body mathematical model of arsenic metabolism including arsenic absorption, storage, methylation, and excretion. The parameters for arsenic methylation in the liver were taken from the biochemical literature. The transport parameters between compartments are largely unknown, so we adjust them so that the model accurately predicts the urine excretion rates of time for the iAs, MMAs, and DMAs in single dose experiments on human subjects.</p> <p>Results</p> <p>We test the model by showing that, with no changes in parameters, it predicts accurately the time courses of urinary excretion in mutiple dose experiments conducted on human subjects. Our main purpose is to use the model to study and interpret the data on the effects of folate supplementation on arsenic methylation and excretion in clinical trials in Bangladesh. Folate supplementation of folate-deficient individuals resulted in a 14% decrease in arsenicals in the blood. This is confirmed by the model and the model predicts that arsenicals in the liver will decrease by 19% and arsenicals in other body stores by 26% in these same individuals. In addition, the model predicts that arsenic methyltransferase has been upregulated by a factor of two in this population. Finally, we also show that a modification of the model gives excellent fits to the data on arsenic metabolism in human cultured hepatocytes.</p> <p>Conclusions</p> <p>The analysis of the Bangladesh data using the model suggests that folate supplementation may be more effective at reducing whole body arsenic than previously expected. There is almost no data on the upregulation of arsenic methyltransferase in populations chronically exposed to arsenic. Our model predicts upregulation by a factor of two in the Bangladesh population studied. This prediction should be verified since it could have important public health consequences both for treatment strategies and for setting appropriate limits on arsenic in drinking water. Our model has compartments for the binding of arsenicals to proteins inside of cells and we show that these comparments are necessary to obtain good fits to data. Protein-binding of arsenicals should be explored in future biochemical studies.</p

    Arsenic in drinking water and cerebrovascular disease, diabetes mellitus, and kidney disease in Michigan: a standardized mortality ratio analysis

    Get PDF
    BACKGROUND: Exposure to arsenic concentrations in drinking water in excess of 300 μg/L is associated with diseases of the circulatory and respiratory system, several types of cancer, and diabetes; however, little is known about the health consequences of exposure to low-to-moderate levels of arsenic (10–100 μg/L). METHODS: A standardized mortality ratio (SMR) analysis was conducted in a contiguous six county study area of southeastern Michigan to investigate the relationship between moderate arsenic levels and twenty-three selected disease outcomes. Disease outcomes included several types of cancer, diseases of the circulatory and respiratory system, diabetes mellitus, and kidney and liver diseases. Arsenic data were compiled from 9251 well water samples tested by the Michigan Department of Environmental Quality from 1983 through 2002. Michigan Resident Death Files data were amassed for 1979 through 1997 and sex-specific SMR analyses were conducted with indirect adjustment for age and race; 99% confidence intervals (CI) were reported. RESULTS: The six county study area had a population-weighted mean arsenic concentration of 11.00 μg/L and a population-weighted median of 7.58 μg/L. SMR analyses were conducted for the entire six county study area, for only Genesee County (the most populous and urban county), and for the five counties besides Genesee. Concordance of results across analyses is used to interpret the findings. Elevated mortality rates were observed for both males (M) and females (F) for all diseases of the circulatory system (M SMR, 1.11; CI, 1.09–1.13; F SMR, 1.15; CI, 1.13,-1.17), cerebrovascular diseases (M SMR, 1.19; CI, 1.14–1.25; F SMR, 1.19; CI, 1.15–1.23), diabetes mellitus (M SMR, 1.28; CI, 1.18–1.37; F SMR, 1.27; CI, 1.19–1.35), and kidney diseases (M SMR, 1.28; CI, 1.15–1.42; F SMR, 1.38; CI, 1.25–1.52). CONCLUSION: This is some of the first evidence to suggest that exposure to low-to-moderate levels of arsenic in drinking water may be associated with several of the leading causes of mortality, although further epidemiologic studies are required to confirm the results suggested by this ecologic SMR analysis
    • …
    corecore