3,799 research outputs found
TBell: A mathematical tool for analyzing decision tables
This paper describes the development of mathematical theory and software to analyze specifications that are developed using decision tables. A decision table is a tabular format for specifying a complex set of rules that chooses one of a number of alternative actions. The report also describes a prototype tool, called TBell, that automates certain types of analysis
Log-periodic drift oscillations in self-similar billiards
We study a particle moving at unit speed in a self-similar Lorentz billiard
channel; the latter consists of an infinite sequence of cells which are
identical in shape but growing exponentially in size, from left to right. We
present numerical computation of the drift term in this system and establish
the logarithmic periodicity of the corrections to the average drift
Applications of Formal Methods to Specification and Safety of Avionics Software
This report treats several topics in applications of formal methods to avionics software development. Most of these topics concern decision tables, an orderly, easy-to-understand format for formally specifying complex choices among alternative courses of action. The topics relating to decision tables include: generalizations fo decision tables that are more concise and support the use of decision tables in a refinement-based formal software development process; a formalism for systems of decision tables with behaviors; an exposition of Parnas tables for users of decision tables; and test coverage criteria and decision tables. We outline features of a revised version of ORA's decision table tool, Tablewise, which will support many of the new ideas described in this report. We also survey formal safety analysis of specifications and software
Tuning Supported Catalyst Reactivity with Dendrimer-Templated Pt-Cu Nanoparticles
The effects of particle composition on heterogeneous catalysis were studied using dendrimer-encapsulated nanoparticles (DENs) as precursors to supported Pt-Cu catalysts. Bimetallic Pt-Cu DENs with varying Pt/Cu ratios were prepared in an anaerobic aqueous solution and deposited onto a high-purity commercial alumina support. The dendrimer template was then thermally removed to yield supported nanoparticle catalysts, which were studied with toluene hydrogenation and CO oxidation catalysis as well as infrared spectroscopy of adsorbed CO. Incorporating Cu into Pt nanoparticles had opposite effects on the two test reactions. Cu acted as a mild promoter for CO oxidation catalysis, and the promoting effect was independent of the amount of Cu present. Conversely, Cu acted as a strong poison for toluene hydrogenation catalysis, and the normalized rate tracked inversely with Cu content. Infrared spectroscopy of the supported nanoparticles indicated that electronic effects (electron donation from Cu to Pt) were minimal for these materials. Consequently, the catalysis results are interpreted in terms of potential structural differences as a function of Cu incorporation and reaction conditions
Lyapunov instability for a periodic Lorentz gas thermostated by deterministic scattering
In recent work a deterministic and time-reversible boundary thermostat called
thermostating by deterministic scattering has been introduced for the periodic
Lorentz gas [Phys. Rev. Lett. {\bf 84}, 4268 (2000)]. Here we assess the
nonlinear properties of this new dynamical system by numerically calculating
its Lyapunov exponents. Based on a revised method for computing Lyapunov
exponents, which employs periodic orthonormalization with a constraint, we
present results for the Lyapunov exponents and related quantities in
equilibrium and nonequilibrium. Finally, we check whether we obtain the same
relations between quantities characterizing the microscopic chaotic dynamics
and quantities characterizing macroscopic transport as obtained for
conventional deterministic and time-reversible bulk thermostats.Comment: 18 pages (revtex), 7 figures (postscript
Storage of frozen meats, poultry, eggs, fruits, and vegetables
Digitized 2007 AES.Includes bibliographical references (pages 42-43)
A Study of Activated Processes in Soft Sphere Glass
On the basis of long simulations of a binary mixture of soft spheres just
below the glass transition, we make an exploratory study of the activated
processes that contribute to the dynamics. We concentrate on statistical
measures of the size of the activated processes.Comment: 17 pages, 9 postscript figures with epsf, uses harvmac.te
Ion dynamics in a linear radio-frequency trap with a single cooling laser
We analyse the possibility of cooling ions with a single laser beam, due to
the coupling between the three components of their motion induced by the
Coulomb interaction. For this purpose, we numerically study the dynamics of ion
clouds of up to 140 particles, trapped in a linear quadrupole potential and
cooled with a laser beam propagating in the radial plane. We use Molecular
Dynamics simulations and model the laser cooling by a stochastic process. For
each component of the motion, we systematically study the dependence of the
temperature with the anisotropy of the trapping potential. Results obtained
using the full radio-frequency (rf) potential are compared to those of the
corresponding pseudo-potential. In the rf case, the rotation symmetry of the
potential has to be broken to keep ions inside the trap. Then, as for the
pseudo-potential case, we show that the efficiency of the Coulomb coupling to
thermalize the components of motion depends on the geometrical configuration of
the cloud. Coulomb coupling appears to be not efficient when the ions organise
as a line or a pancake and the three components of motion reach the same
temperature only if the cloud extends in three dimensions
Harmonic oscillators in the Nos\'e - Hoover thermostat
We study the dynamics of an ensemble of non-interacting harmonic oscillators
in a nonlinear dissipative environment described by the Nos\'e - Hoover model.
Using numerical simulation we find the histogram for total energy, which agrees
with the analysis of the Nos\'e - Hoover equations effected with the method of
averaging. The histogram does not correspond to Gibbs' canonical distribution.
We have found oscillations at frequency proportional to ,
the dissipative parameter of thermostat and the characteristic
mass of particle, about the stationary state corresponding to equilibrium. The
oscillations could have an important bearing upon the analysis of simulating
molecular dynamics in the Nos\'e - Hoover thermostat.Comment: 7 pages, 4 figure
- …