3,799 research outputs found

    TBell: A mathematical tool for analyzing decision tables

    Get PDF
    This paper describes the development of mathematical theory and software to analyze specifications that are developed using decision tables. A decision table is a tabular format for specifying a complex set of rules that chooses one of a number of alternative actions. The report also describes a prototype tool, called TBell, that automates certain types of analysis

    Log-periodic drift oscillations in self-similar billiards

    Full text link
    We study a particle moving at unit speed in a self-similar Lorentz billiard channel; the latter consists of an infinite sequence of cells which are identical in shape but growing exponentially in size, from left to right. We present numerical computation of the drift term in this system and establish the logarithmic periodicity of the corrections to the average drift

    Applications of Formal Methods to Specification and Safety of Avionics Software

    Get PDF
    This report treats several topics in applications of formal methods to avionics software development. Most of these topics concern decision tables, an orderly, easy-to-understand format for formally specifying complex choices among alternative courses of action. The topics relating to decision tables include: generalizations fo decision tables that are more concise and support the use of decision tables in a refinement-based formal software development process; a formalism for systems of decision tables with behaviors; an exposition of Parnas tables for users of decision tables; and test coverage criteria and decision tables. We outline features of a revised version of ORA's decision table tool, Tablewise, which will support many of the new ideas described in this report. We also survey formal safety analysis of specifications and software

    Tuning Supported Catalyst Reactivity with Dendrimer-Templated Pt-Cu Nanoparticles

    Get PDF
    The effects of particle composition on heterogeneous catalysis were studied using dendrimer-encapsulated nanoparticles (DENs) as precursors to supported Pt-Cu catalysts. Bimetallic Pt-Cu DENs with varying Pt/Cu ratios were prepared in an anaerobic aqueous solution and deposited onto a high-purity commercial alumina support. The dendrimer template was then thermally removed to yield supported nanoparticle catalysts, which were studied with toluene hydrogenation and CO oxidation catalysis as well as infrared spectroscopy of adsorbed CO. Incorporating Cu into Pt nanoparticles had opposite effects on the two test reactions. Cu acted as a mild promoter for CO oxidation catalysis, and the promoting effect was independent of the amount of Cu present. Conversely, Cu acted as a strong poison for toluene hydrogenation catalysis, and the normalized rate tracked inversely with Cu content. Infrared spectroscopy of the supported nanoparticles indicated that electronic effects (electron donation from Cu to Pt) were minimal for these materials. Consequently, the catalysis results are interpreted in terms of potential structural differences as a function of Cu incorporation and reaction conditions

    Lyapunov instability for a periodic Lorentz gas thermostated by deterministic scattering

    Full text link
    In recent work a deterministic and time-reversible boundary thermostat called thermostating by deterministic scattering has been introduced for the periodic Lorentz gas [Phys. Rev. Lett. {\bf 84}, 4268 (2000)]. Here we assess the nonlinear properties of this new dynamical system by numerically calculating its Lyapunov exponents. Based on a revised method for computing Lyapunov exponents, which employs periodic orthonormalization with a constraint, we present results for the Lyapunov exponents and related quantities in equilibrium and nonequilibrium. Finally, we check whether we obtain the same relations between quantities characterizing the microscopic chaotic dynamics and quantities characterizing macroscopic transport as obtained for conventional deterministic and time-reversible bulk thermostats.Comment: 18 pages (revtex), 7 figures (postscript

    Storage of frozen meats, poultry, eggs, fruits, and vegetables

    Get PDF
    Digitized 2007 AES.Includes bibliographical references (pages 42-43)

    A Study of Activated Processes in Soft Sphere Glass

    Full text link
    On the basis of long simulations of a binary mixture of soft spheres just below the glass transition, we make an exploratory study of the activated processes that contribute to the dynamics. We concentrate on statistical measures of the size of the activated processes.Comment: 17 pages, 9 postscript figures with epsf, uses harvmac.te

    Ion dynamics in a linear radio-frequency trap with a single cooling laser

    Full text link
    We analyse the possibility of cooling ions with a single laser beam, due to the coupling between the three components of their motion induced by the Coulomb interaction. For this purpose, we numerically study the dynamics of ion clouds of up to 140 particles, trapped in a linear quadrupole potential and cooled with a laser beam propagating in the radial plane. We use Molecular Dynamics simulations and model the laser cooling by a stochastic process. For each component of the motion, we systematically study the dependence of the temperature with the anisotropy of the trapping potential. Results obtained using the full radio-frequency (rf) potential are compared to those of the corresponding pseudo-potential. In the rf case, the rotation symmetry of the potential has to be broken to keep ions inside the trap. Then, as for the pseudo-potential case, we show that the efficiency of the Coulomb coupling to thermalize the components of motion depends on the geometrical configuration of the cloud. Coulomb coupling appears to be not efficient when the ions organise as a line or a pancake and the three components of motion reach the same temperature only if the cloud extends in three dimensions

    Harmonic oscillators in the Nos\'e - Hoover thermostat

    Full text link
    We study the dynamics of an ensemble of non-interacting harmonic oscillators in a nonlinear dissipative environment described by the Nos\'e - Hoover model. Using numerical simulation we find the histogram for total energy, which agrees with the analysis of the Nos\'e - Hoover equations effected with the method of averaging. The histogram does not correspond to Gibbs' canonical distribution. We have found oscillations at frequency proportional to α/m\sqrt{\alpha/m}, α\alpha the dissipative parameter of thermostat and mm the characteristic mass of particle, about the stationary state corresponding to equilibrium. The oscillations could have an important bearing upon the analysis of simulating molecular dynamics in the Nos\'e - Hoover thermostat.Comment: 7 pages, 4 figure
    corecore