288 research outputs found

    Cohesive crack, size effect, crack band and work-of-fracture models compared to comprehensive concrete fracture tests

    Get PDF
    The simplest form of a sufficiently realistic description of the fracture of concrete as well as some other quasibrittle materials is a bilinear softening stress-separation law (or an analogous bilinear law for a crack band). This law is characterized by four independent material parameters: the tensile strength, f′[subscript t], the stress σ[subscript k] at the change of slope, and two independent fracture energies—the initial one, G[subscript f] and the total one, G[subscript F]. Recently it was shown that all of these four parameters can be unambiguously identified neither from the standard size effects tests, nor from the tests of complete load-deflection curve of specimens of one size. A combination of both types of test is required, and is here shown to be sufficient to identify all the four parameters. This is made possible by the recent data from a comprehensive test program including tests of both types made with one and the same concrete. These data include Types 1 and 2 size effects of a rather broad size range (1:12.5), with notch depths varying from 0 to 30 % of cross section depth. Thanks to using identically cured specimens cast from one batch of one concrete, these tests have minimum scatter. While the size effect and notch length effect were examined in a separate study, this paper deals with inverse finite element analysis of these comprehensive test data. Using the crack band approach, it is demonstrated: (1) that the bilinear cohesive crack model can provide an excellent fit of these comprehensive data through their entire range, (2) that the G[subscript f] value obtained agrees with that obtained by fitting the size effect law to the data for any relative notch depth deeper than 15 % of the cross section (as required by RILEM 1990 Recommendation), (3) that the G[subscript F] value agrees with that obtained by the work-of-fracture method (based on RILEM 1985 Recommendation), and (4) that the data through their entire range cannot be fitted with linear or exponential softening laws.United States. Dept. of Transportation (through Grant 20778 from the Infrastructure Technology Institute of Northwestern University)National Science Foundation (U.S.) (Grant CMMI-1129449)Northwestern University (W.P. Murphy Fellowship

    Whirl Flutter and the Development of the NASA X-57 Maxwell

    Get PDF
    The X-57 Maxwell is NASAs all-electric demonstration vehicle. The primary demonstration objective of this flight test program is to show a factor of five reduction in energy consumption. The vehicle includes two large wing tip propellers designed to provide propul- sion at cruise conditions and twelve leading edge propellers designed to operate at high lift conditions. The first configuration of the vehicle that will be flight tested has the large wing tip propellers relocated to an inboard wing station. A simplified structural dynamic model of the propulsion system has been generated and coupled with a beam model of the vehicle. Whirl flutter analyses have been performed, examining the stability of the isolated propulsion system and coupled to the beam model of the vehicle. Trimmed flight scenarios for the vehicle include straight and level flight and zero power windmilling conditions. The whirl flutter analyses for this configuration indicate that the configuration will be free of whirl flutter within the required flight envelope

    Characterization of concrete failure behavior: a comprehensive experimental database for the calibration and validation of concrete models

    Get PDF
    Concrete is undoubtedly the most important and widely used construction material of the late twentieth century. Yet, mathematical models that can accurately capture the particular material behavior under all loading conditions of significance are scarce at best. Although concepts and suitable models have existed for quite a while, their practical significance is low due to the limited attention to calibration and validation requirements and the scarcity of robust, transparent and comprehensive methods to perform such tasks. In addition, issues such as computational cost, difficulties associated with calculating the response of highly nonlinear systems, and, most importantly, lack of comprehensive experimental data sets have hampered progress in this area. This paper attempts to promote the use of advanced concrete models by (a) providing an overview of required tests and data preparation techniques; and (b) making a comprehensive set of concrete test data, cast from the same batch, available for model development, calibration, and validation. Data included in the database ‘http://www.baunat.boku.ac.at/cd-labor/downloads/versuchsdaten’ comprise flexure tests of four sizes, direct tension tests, confined and unconfined compression tests, Brazilian splitting tests of five sizes, and loading and unloading data. For all specimen sets the nominal stress–strain curves and crack patterns are provided.Austria. Ministry of Environment, Youth and FamilyAustria. National Foundation for Research, Technology and DevelopmentUnited States. Dept. of Transportation (Grant No. 20778

    Appalachian Environmental Health Literacy: Building Knowledge and Skills to Protect Health

    Get PDF
    Environmental health literacy (EHL) is an emerging, multidisciplinary field that promotes understanding of how environmental exposures can affect human health. After discussing the regional relevance of environmental health knowledge and skills, this article describes three ongoing Appalachian projects that are focused on measuring and building EHL

    Whirl Flutter Stability and Its Influence on the Design of the Distributed Electric Propeller Aircraft X- 57

    Get PDF
    This paper studies the whirl flutter stability of the NASA experimental electric propulsion aircraft designated the X-57 Maxwell. whirl flutter stability is studied at two flight conditions: sea level at 2700 RPM to represent take-off and landing and 8000 feet at 2250 RPM to represent cruise. Two multibody dynamics analyses are used: CAMRAD II and Dymore. The CAMRAD II model is a semi-span X-57 model with a modal representation for the wing/pylon system. The Dymore model is a semi-span wing with a propeller composed of beam elements for the wing/pylon system that airloads can be applied to. The two multibody dynamics analyses were verified by comparing structural properties between each other and the NASTRAN analysis. For whirl flutter, three design revisions of the wing and pylon mount system are studied. The predicted frequencies and damping ratio of the wing modes show good agreements between the two analyses. Dymore tended to predict a slightly lower damping ratio as velocity increased for all three dynamic modes presented. Whirl flutter for the semi-span model was not present up to 500 knots for the latest design, well above the operating range of the X-57
    corecore