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Abstract

Topological constraint theory (TCT) has enabled the prediction of various properties of 

oxide glasses as a function of their composition and structure. However, the robust application 

of TCT relies on accurate knowledge of the network structure and topology. Here, based on 

classical molecular dynamics simulations, we derive a fully analytical model describing the 

topology of the calcium aluminosilicate [(CaO)x(Al2O3)y(SiO2)1–x–y, CAS] ternary system. This model 

yields the state of rigidity (flexible, isostatic, or stressed-rigid) of CAS systems as a function of 

composition and temperature. These results reveal the existence of correlations between 

network topology and glass-forming ability. This study suggests that glass-forming ability is 

encoded in the network topology of the liquid state rather than that of the glassy state.

Keywords

Topological constraint theory, Molecular dynamics, Calcium aluminosilicate

1. Introduction

The calcium aluminosilicate (CAS) system is an archetypical model for alkali-free glasses 

used in display applications1 and cementitious materials (e.g., cement, fly ash, or slag).2 The 

structure and properties of the CAS ternary system have been extensively studied from 

experiments,3–6 atomistic simulations,7–10 and machine learning.11–13 Indeed, this ternary system 

offers an ideal model to investigate the effects of polymerization (i.e., by varying the Ca/Al ratio) 

and of the network-forming skeleton (i.e., by varying the Al/Si ratio at fixed Ca/Al).

Since the stoichiometry of CAS and other oxide glasses can be continuously adjusted, 

there exists a largely untapped opportunity to discover new glass compositions featuring 

desirable properties and functionalities.14, 15 However, the vastness of the accessible 

compositional space renders traditional material discovery approaches (e.g., Edisonian “trial-

and-error”) inefficient.16 In that regard, composition-property predictive models can facilitate 

and rationalize the search for new glasses by targeting searches toward promising compositional 

domain.17, 18
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To this end, topological constraint theory (TCT) has been a key enabler to develop 

predictive models that relate the composition and structure of glasses to their properties.19, 20 

Various TCT-based models have been proposed over the past decades to predict glass-forming 

ability, glass transition temperature, liquid fragility, hardness, stiffness, dissolution rate, etc.19, 21–

28 The success of TCT is based on the fact that many macroscopic properties of disordered 

materials primarily depend on the topology of the atomic structure, while other structural details 

only have a second-order effect.29 As such, TCT reduces complex disordered atomic networks 

into simpler structural trusses,22 wherein some nodes (the atoms) are connected to each other 

by some topological constraints (the chemical bonds). In structural glasses, topological 

constraints comprise of the radial two-body bond-stretching (BS) and angular three-body bond-

bending (BB) constraints. The number of constraints per atom (nc) then offers a simple, reduced-

dimensionality metric that is often correlated with macroscopic properties.22

Importantly, predictions from TCT critically rely on an accurate knowledge of the glass 

structure and connectivity, which is the key to enumerate the number of BS and BB constraints 

created by each type of atoms in the glass network.30 This is a challenge as the local structure of 

glasses (and hence, the number of constraints) changes as a function of composition. For instance, 

CAS glasses exhibit several structural complexities, e.g., overcoordinated Al atoms,5, 31–33 

tricluster oxygen units,34 free oxygen species,35, 36 varying Ca environments,37 etc. All of these 

features impact the constraints enumeration and, hence, should be accounted for in robust 

topological models. Although such information can be accessed by molecular dynamics (MD) 

simulations of one composition at a time,30 it is not practical to systematically conduct MD 

simulations over large compositional domains considering their high computational cost. In 

addition, discrete models (e.g., relying on a finite, discrete number of MD simulations) are not 

differentiable, that is, they do not allow for the computation of the derivative of the number of 

constraints per atom with respects to composition.38 This prevents the use of gradient-based 

“inverse design” optimization methods (e.g., to pinpoint glasses with minimum, maximum, or 

tailored rigidity).

Here, to address these challenges, we present a fully analytical model describing the 

network topology of (CaO)x(Al2O3)y(SiO2)1–x–y (CAS) glasses over the entire ternary domain. This 
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model is informed and validated by a series of classical MD simulations, but, importantly, offers 

a pathway to continuously predict the properties of CAS glasses as a function of their 

compositions without the need for any systematic MD simulation. 

This paper is organized as follows. Section 2 describes the MD simulations used in this 

study. We then introduce our analytical topological model for CAS glasses in Sec. 3. In Sec. 4, we 

discuss the obtained rigidity diagrams of the CAS ternary system. Finally, we establish some 

conclusions in Sec. 5.

2. Methods

To establish our analytical model, we first conduct MD simulations of 231 CAS glasses using 

the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) package.39 The chosen 

compositions homogeneously cover the entire CAS domain, with 5% increments in the mol% 

concentration of the CaO, Al2O3 and SiO2 oxide constituents. Note that some of these CAS glasses 

do not exhibit satisfactory glass-forming ability in practice, but they all can be generated by MD 

due to the use of a high cooling rate. Each glass sample comprises around 3000 atoms. This 

system size is found to be large enough to ensure that the computed structural features 

presented in the following are not affected by any finite size effect (see Supplemental Material).

Here, we adopt the interatomic potential parametrized by Jakse,8 which has been 

reported to offer good results in agreement with experiment data34, 40, 41 and applied in several 

previous studies.11, 42 The Jakse potential relies on partial charges and a 2-body Born-Mayer-

Huggins formulation: ���(���) =  
����4��0��� +  ���exp (���― ������ ) ―  

����6�� (Eq. 1)

  and  refers to pairs of elements (Si, O, Al, and Ca),  is the distance  atom  and ,  and � � ��� � � ��
 are the partial charges of elements  and ,  is the vacuum dielectric permittivity, and , , , and  �� � � �0 ��� ��� ��� ���

are some fitting parameters [Tab. 1]. A cutoff of  is used for the short-range interactions. The Å

Coulombic interactions are calculated by adopting the Fennell damped shifted force field model a 

damping parameter of   and a global cutoff of 8.  .43 We keep the integration timestep as fixed as Å ―1 Å
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We generate the CAS glass samples using the conventional melt-quench method, as 

described in the following.44 First, atoms are randomly placed in a cubic box using PACKMOL with 

a distance cutoff of 2.0  between each pair of atoms to avoid any unrealistic overlap.45 It is Å

worth noting that the choice of the initial density of the system is irrelevant since, after being 

homogenized at elevated temperature, the melt fully loses the memory of its initial configuration 

(and of its initial density). These initial configurations are then subjected to an energy 

minimization process, followed by 100 ps relaxations in the canonical (NVT) and isothermal-

isobaric (NPT) ensembles at 300 K, sequentially. These samples are then fully melted at 3000 K 

for 100 ps in the NVT and, subsequently, NPT ensemble (at zero pressure) to ensure the loss of 

the memory of the initial configurations and to equilibrate the systems. Next, these liquids are 

cooled from 3000 K to 300 K in the NPT ensemble at zero pressure with a cooling rate of 1 K/ps. 

The obtained glass samples are further relaxed at 300 K for 100 ps in the NPT ensemble—so that 

the simulated glasses are eventually representative of experimental glasses at room temperature. 

This relaxation is long enough to ensure a plateau in the energy and volume of the simulated 

glasses (see Supplemental Material). Note that this quenching procedure is slightly adjusted for 

the following select compositions: (1) a higher initial melting temperature of 5000 K is used for 

the samples wherein the SiO2 concentration is larger or equal to 95 mol%—since these glasses 

exhibit high glass transition temperatures, and (2) a faster cooling rate of 100 K/ps is used for the 

samples wherein the CaO concentration is larger or equal to 90 mol%. Indeed, although the 

cooling rate can affect the glass structure, the use of a higher cooling rate here is necessary as 

these systems would otherwise tend to crystallize with a cooling rate of 1 K/ps.

Once relaxed, the glasses are subjected to a structural analysis. We compute the 

coordination number of each atom by enumerating the number of neighbors that are present in 

their first coordination shell. The extent of the first coordination shell of each element is taken 

as the distance associated with the first minimum after the first peak in the partial pair 

distribution functions. This yields a cutoff of 2.000, 2.345, and 3.045 Å for Si–O, Al–O, and Ca–O 

bonds, respectively. We then label Al atoms as being 4- or 5-fold coordinated if they have 4 or 5 

O neighbors in their first coordination shell, respectively. Similarly, we enumerate for each O 

atom the number of network-forming species (Si or Al) that are present in their first coordination 
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shell (based on the previous cutoff values). Oxygen atoms are then labeled as free oxygen (FO), 

non-bridging oxygen (NBO), bridging oxygen (BO) or tri-cluster oxygen (TO) if they present 0, 1, 

2, or 3 network-forming neighbors in their first coordination shell, respectively.

For statistical purposes, six independent quenching simulations are performed for each 

glass. All the data presented in the following are averaged over these repetitions. The average 

standard deviation associated with each computed property is presented in Supplemental 

Material.

3. Topological model of calcium aluminosilicate glasses

1. Polymerization and depolymerization of the aluminosilicate network

a. Effect of Ca and Al atoms on topology

To establish our topological model of CAS glasses, we take as a reference the structure of 

glassy silica (SiO2), wherein all the Si and O atoms are 4- and 2-fold coordinated, respectively—

that is, all the O act as bridging oxygen atoms bonded to two network formers.14 Starting from 

this reference structure, we then describe the competitive effects of Ca and Al atoms: (i) each Ca 

atom consumes 2 BOs and, in turn, creates 2 non-bridging oxygen atoms,46 whereas, in contrast, 

(ii) each Al atom consumes 1 NBO and creates 1 BO.14 These well-known effects arise from the 

following mechanisms. On one hand, when added to pure SiO2, Ca2+ cations act as network 

modifiers as they tend to depolymerize the atomic network by breaking some Si–O–Si inter-

tetrahedral joints and, in turn, charge-compensating pairs of negatively-charged NBOs.46 On the 

other hand, starting from a calcium silicate glass, newly-added Al atoms act as network formers 

and tend to repolymerize the network by using available Ca2+ cations to charge-compensate 

negatively-charged 4-fold coordinated AlO4 units.47–50 This effectively increases the network 

connectivity since the Ca cations that are used as charge compensators do not create any NBO 

any longer. Based on this model, the number of BO (NBO) and NBO (NNBO) are expressed as:

�BO = �O ― 2 × �Ca + �Al (Eq. 2)�NBO = 2 × �Ca ―�Al (Eq. 3)
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where , , , , and  are the number of BO, NBO, total oxygen, calcium, and �BO �NBO �O �Ca �Al

aluminum atoms, respectively. Note that these equations are not valid for all CAS compositions. 

In detail, mechanism (i) can hold until the added Ca atoms exhaust all the BOs present in the 

network, that is, for , while mechanism (ii) remains possible until the added Al atoms �BO ≥ 0

consume all the NBOs present in the network, that is, for . In the following sections, we �NBO ≥ 0

discuss the cases of the Ca-rich regime (i.e., when mechanism (i) is no longer possible) and Al-

rich regime (i.e., when mechanism (ii) breaks down).

Figure 1 illustrates and summarizes the overall network connectivity in CAS glasses—and 

its dependance on glass composition. Starting from a reference (CaO)25(SiO2)75 binary calcium 

silicate glass [Fig. 1(a)], the addition of CaO tends to decrease polymerization—since, as a 

network modifier, Ca atoms tend to break Si–O bonds and result in the formations of NBOs [Fig. 

1(b)]. In contrast, the addition of Al2O3 tends to increase polymerization—since Al atoms tend to 

“consume” NBOs by using Ca atoms as charge-compensating species [Fig. 1(c)].

b. Ca-rich regime: formation of free oxygen atoms

We then focus on the Ca-rich regime (i.e., wherein  would become negative assuming �BO

that Eq. 2 would continue to hold) and discuss the effect of Ca atoms on the network topology in 

this compositional domain. In this domain, the network becomes fully depolymerized, that is, 

there is no remaining BO and all Si and Al polytopes are isolated from each other. In this regime, 

our MD simulations suggest that the excess of Ca atoms results in the formation of free oxygen 

atoms [Fig. 3(a)], that is, O atoms that are not connected to any Si or Al network former.42 This 

echoes previous experimental findings that also suggested the existence of FOs.35, 36, 52

Based on this observation, we describe the number of FO atoms according to the 

following model. First, we assume that, in this regime, all the Si and Al atoms remain 4-fold 

coordinated and, hence, they are each surrounded by 4 NBOs. The number of NBOs is then given 

by:

�NBO = 4 × (�Si + �Al) (Eq. 4)
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We then assume that all the remaining O atoms act as FOs, whose number is given by:

�FO = �O ―�NBO (Eq. 5)

c. Al-rich regime: formation of 5-fold aluminum and tricluster oxygen atoms

Next, we focus on the Al-rich regime (i.e., , wherein  would become 2�Ca < �Al �NBO

negative assuming that Eq. 3 would continue to hold) and discuss how additional Al3+ cations 

impact the atomic structure of CAS glasses. In this domain, the glass compositions are 

peraluminous, that is, they exhibit an excess number of Al atoms as compared to the ones that 

are needed to charge-compensate all the calcium atoms in the glass (i.e., ).46 In this �Al = 2�Ca

regime, all the AlO4 tetrahedral units cannot be charge-compensated any longer due to the deficit 

of Ca cations. From this point, two possible mechanisms have been suggested to occur: (i) some 

Al atoms become overcoordinated (i.e., with a coordination number larger than 4) and (ii) some 

3-fold coordinated triclusters oxygen atoms (i.e., O atoms that are connected to 3 Si or Al network 

formers) tend to form.34, 53, 54 We now discuss these two behaviors.

First, previous experiments5, 31–33 and simulations11, 42 have suggested that some excess 

Al atoms become overcoordinated, that is, they become 5- or 6-fold coordinated. Neuville et al. 

reported the existence of a small fraction (< 3%) of 6-fold coordinated aluminum (AlVI) at very 

high Al/Ca ratios, in agreement with our MD simulations.11 However, here, considering that 

independently predicting the fractions of both 5- and 6-fold coordinated Al atoms would be ill-

defined based on the present assumptions, we assume that the fraction of 6-fold coordinated Al 

is small enough to be neglected—that is, we assume that, in this regime, all the overcoordinated 

Al atoms are 5-fold coordinated.

Figure 2 shows the composition dependence of the number of predicted and computed 

5-fold Al atoms per formula unit of glass for (CaO)x(Al2O3)y(SiO2)1–x–y, as a function of [Al2O3] – 

[CaO] (since this metric is found to be the most influential overall). As expected, we find that the 

number of overcoordinated Al remains nearly zero as long as there is no deficit of Ca cations (i.e., 

). Although our analytical model predicts the number of 5-fold Al atoms to be strictly 2�Ca > �Al

zero in fully-compensated glasses (i.e., wherein [Al2O3] = [CaO]), MD simulations do predict the 
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existence of a small fraction of such overcoordinated atoms even when [Al2O3] < [CaO]. This 

echoes previous experiments.5, 55 This is a consequence of the fact that our model relies on an 

ideal representation of the glass structure, wherein all Al atom remain 4-fold coordinated if they 

can be charge-compensated by a Ca cation. However, simulated glasses tend to slightly deviate 

from this ideal representation, since they present a small fraction of 5-fold Al atoms even when 

Al atoms could theoretically remain 4-fold coordinated. This increased disorder observed in 

simulated glasses is a consequence of entropic effects associated with the high cooling rate used 

during their quenching. Although our analytical model presently does not account for such 

entropic effects, this limitation does not notably impact its ability to reliably predict the topology 

of CAS glasses (see below) since the fraction of excess 5-fold coordinated Al atoms remains low 

(less than 8%). Hence, this small fraction of excess 5-fold coordinated Al atoms is neglected from 

our model thereafter. 

We then find that the computed number of 5-fold coordinated Al atoms scales fairly 

linearly with the number of excess Al atoms (i.e., ), which suggests that the number of �Al ―2�Ca

overcoordinated Al is proportional to the number of excess Al atoms. Based on this observation, 

we model the number of 5-fold coordinated Al atoms (  ) as:�AlV

�AlV = �(�Al ― 2 × �Ca) (Eq. 6)

where  is an empirical factor that captures the fraction of excess Al that eventually becomes �
overcoordinated. Here, based on our MD results, we assume that a quarter of the excess Al atoms 

become overcoordinated (i.e., ), which yields a good match between MD simulations and � = 1/4

the present analytical model [Fig. 2]. This specific value of  here is chosen based on the fact that, �
even though it slightly overestimates the number of 5-fold coordinated Al atoms, it partially 

compensates for the fact that our model is neglecting 6-fold coordinated Al atoms (see below). 

The fact that the number of 5-fold coordinated Al atoms is lower than the number of 

excess Al atoms (i.e., that are not charge-compensated by Ca atoms) suggests that there is 

another charge compensation mechanism at play in the Al-rich regime, namely, through the 
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formation of TO atoms. Indeed, our MD simulations show the existence of such TO species, which 

echoes previous experiments and simulations.34, 53, 54 We model the number of TO atoms as 

follows. 

To determine the fraction of TO atoms in the glass, we first calculate the total excess 

negative charge of all 4- and 5-fold coordinated Al atoms that are not charge-compensated by Ca 

atoms and subsequently determine the number of TO atoms that is needed to counterbalance 

the excess negative charge. We first calculate the excess negative charge of AlO4 and AlO5 units 

by assuming that all the O atoms take the form of BOs in these polytopes (i.e., each O contributes 

a charge of –1 to the central Al). This analysis yields an overall local charge of –1 and –2 for AlO4  

and AlO5 units, respectively, so that the total excess negative charge is (�AlIV ―2 × �Ca) + 2 ×

, where  is the number of 4-fold coordinated Al atoms. In turn, replacing a BO by a TO in �AlV �AlIV

the Al polytopes increases the local charge by +1/3 since a BO contributes a charge of –1 to the 

central Al (i.e., –2/2), whereas a TO only contributes a charge of –2/3 since it is shared by three 

Si or Al polytopes.56 Altogether, since a TO is connected to 3 distinct polytopes, the overall 

increase in charge resulting from the transformation of a BO into a TO is equal to +1 (i.e., ). 3 × 1/3

Based on this, the number of TO atoms that is needed to counterbalance the excess negative 

charge of the Al atoms is then given by:

�TO = �AlIV + 2 × �AlV ― 2 × �Ca (Eq. 7)

where  is the number of TO atoms. Since our model assumes the existence of only 4- and 5-�TO

fold coordinated Al atoms in the Al-rich regime, Eq. 7 can be converted into:

�TO = �Al ― 2 × �Ca + �AlV (Eq. 8)

We then assume that all the remaining O atoms act as BOs in Al-rich regime, whose number is 

given by:

�BO = �O ―�TO (Eq. 9)
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d. Comparison between analytical model and MD simulations

To validate the ability of our analytical model to offer accurate predictions of the degree 

of connectivity in the CAS glasses, we now compare the oxygen species fractions (i.e., in order of 

increasing connectivity: FO, NBO, BO, and TO) predicted by our model with those computed by 

MD simulations. Table 2 summarizes the predicted fractions for each oxygen species as a function 

of the molar fractions of CaO and Al2O3 (x and y respectively) following the unit formula 

(CaO)x(Al2O3)y(SiO2)1–x–y. Equations are provided for: (1) “fully-depolymerized regime,” i.e., 

wherein all BOs are consumed by Ca atoms, so that the glass network only comprises of FO and 

NBO atoms (i.e., ), (2) “partially-depolymerized regime,” wherein the network (� ―  �) ≤  ― 2/3

only contains NBO and BO atoms (i.e., ), and (3) “fully-polymerized regime,” ―2/3 ≤ (� ― �) ≤ 0

wherein the network only contains BO and TO atoms (i.e., ).0 ≤ (� ― �)
Figure 3 shows the comparison between predicted (by our analytical model) and 

computed (by MD simulations) fractions for the oxygen species (a) FO, (b) NBO, (c) BO, and (d) 

TO as a function of [Al2O3] – [CaO]. We first note that our analytical model offers good predictions 

of FO, NBO, BO, and TO over the entire CAS domain, both in terms of trend and magnitude. Then, 

we also note that our analytical model solely depends on the competition between [Al2O3] and 

[CaO] atoms (i.e., “y – x”, see Tab. 3) and, hence, does not fully capture the variations in the 

fractions of oxygen species at a fixed value of “y – x.” The deviations between model and MD 

simulations are mostly observed at the vicinity of the transitions between compositional regimes, 

namely, near the fully-compensated (i.e., ) and fully-depolymerized domains (i.e., � ― � = 0 � ― �
). Specifically, we find that the MD simulations predict a non-zero fraction of FO, NBO, = ―2/3

BO, and TO even when the fractions of such species are predicted to be strictly zero. Such 

discrepancies can be attributed to the fact that, for the sake of simplification, our model assumes 

that only two types of oxygen species can coexist at the same time, while experiments35, 52, 54 and 

MD simulations34, 42 suggest that more than two species can simultaneously coexist in the 

network. As mentioned above, this slight discrepancy is a consequence of the fact that our model 

relies on ideal assumptions in order to remain simple and analytical (e.g., TO atoms are not 
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formed as long as all the 4-fold coordinated Al atoms can be charge-compensated by Ca atoms). 

In contrast, simulated glasses tend to exhibit some enhanced degree of disorder, which arises 

from entropic effects that are not accounted for by our model. Nevertheless, the difference 

between the simulated and predicted fractions of O species remains small and, hence, does not 

notably impact the ability of our model to reliably predict the topology of CAS glasses (see below). 

Nevertheless, despite these simplifications, our model offers a realistic description of the overall 

degree of connectivity of the glass, which is key to analytically predict the number of constraints 

per atom in the network (see Sec. 4). We emphasize that this level of agreement is not the result 

of any fitting and, rather, is a direct consequence of the physical/chemical mechanisms described 

in Sec. 3.1. Clearly, an enhanced agreement could be obtained with simply fitting the MD data 

with a complex non-linear function, but this approach would lack any physical foundation.

2. Connectivity of the network modifiers

We now discuss how the local connectivity of the network-modifying atoms (i.e., Ca 

atoms) is varying as a function of the glass composition. The analytical model described in the 

following aims to predict the partial coordination numbers of Ca atoms, that is, the average 

number of FO, NBO, BO, and TO around each Ca atom—which is critical to inform our topological 

model (see Sec. 4).

To establish our model of Ca connectivity, we take an alternative viewpoint and start by 

describing the average number of Ca around each type of O species. Indeed, based on the analysis 

of our MD simulations, we find that the average number of Ca atoms around FO, NBO, BO, and 

TO atoms remains fairly constant and barely depends on glass composition. The average FO–Ca, 

NBO–Ca, BO–Ca, and TO–Ca partial coordination numbers ( , wherein XO refers to a given �XO ― Ca

O species) are equal to 5.5, 3.0, 0.78, and 0.12, respectively. This trend (i.e., �FO ― Ca > �NBO ― Ca >

) can be understood from the fact that, starting from an isolated FO, the �BO ― Ca > �TO ― Ca

addition of each O–Si or O–Al bond (i) reduces the need for the negative charge of O atoms to be 

compensated by the nearby presence of a Ca cation and (ii) occupies some space around the 

central O, which prevents the accumulation of Ca neighbors. These partial coordination numbers 
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can also be understood as a degree of “affinity” between Ca atoms and O species, wherein Ca 

cations are preferentially located in the vicinity of FO atoms and almost fully avoid TO atoms.

The knowledge of the XO–Ca partial coordination numbers then allows us to determine 

the Ca–XO coordination numbers ( ) by expressing the total number of Ca–XO bonds �Ca ― XO

( ) in two different ways as:�Ca ― XO

�Ca ― XO =  �Ca × �Ca ― XO = �XO × �XO ― Ca (Eq. 10)

where  is the number of XO atoms (where XO = FO, NBO, BO, and TO). As an additional �XO

refinement of the model, we add a scaling coefficient  to ensure that the total average �
coordination number of Ca cations (i.e., the sum of all the partial Ca–XO coordination numbers) 

remains equal to 6 throughout the entire CAS compositional domain:57

�Ca ― XO =  ��XO × �XO ― Ca�Ca
(Eq. 11)

where  can be expressed as:�
� =  

6

 ∑XO(�XO ― Ca × �XO)/ �Ca
(Eq. 12)

where the summation spans over all the O species (XO = FO, NBO, BO, and TO).

Figure 4 shows a comparison between the calculated (i.e., by our analytical model) and 

computed (i.e., by MD simulations) values of the (a) Ca–FO, (b) Ca–NBO, (c) Ca–BO, and (d) Ca–

TO partial coordination numbers as a function of [Al2O3] – [CaO]. Despite relying on simple 

assumptions, our model yields realistic predictions, both in terms of trend and magnitude. Similar 

to Fig. 3, we observe that most of the deviations between our model and MD simulations occur 

in the vicinity of the transitions between the fully-compensated and fully-depolymerized 

domains—again a consequence of the fact that our model only assumes that at most two types 

of oxygen species can coexist at the same time. Finally, we note that the computed Ca–XO partial 
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coordination numbers exhibit some slight variations at fixed value of [Al2O3] – [CaO], which is not 

accounted for by our model. Nevertheless, it is notable that the present analytical model can 

capture fairly well the non-monotonic and non-linear evolution of the local connectivity around 

Ca atoms while only relying on simple assumptions regarding the relative affinity of FO, NBO, BO, 

and TO atoms for Ca cations.

Overall, based on Eqs. 4-to-12, our model can predict the average network topology of CAS 

glasses by using the glass composition as sole input—which is key to analytically predict the 

number of constraints per atom as a function of composition. Since it solely depends on 

composition, our analytical model is intrinsically unable to capture the potential existence of 

topological fluctuations at fixed composition. Nevertheless, we note that, based on the analysis 

of the structure of the glasses generated independent quenching, the variability in the glass 

connectivity at fixed composition never exceeds 1% (see Tab. S2 in the Supplemental Material). 

As such, our model can reliably predict the average (i.e., configurational average) topology of CAS 

glasses as a function of their composition.

4. Rigidity diagram of the calcium aluminosilicate ternary system

1. Glassy state

We use the topological inputs presented in Sec. 3 (i.e., fraction of each O species, Al 

coordination numbers, and Ca partial coordination numbers) to determine the state of rigidity of 

CAS glasses (i.e., flexible, isostatic, or stressed-rigid) as a function of temperature and 

composition by enumerating the number of radial BS and angular BB constraints per atom based 

on the coordination number of each atom, as described in the following. We first focus on the 

glassy state (i.e., low temperature). Table 3 summarizes the average number of BS and BB 

constraints created by each individual species in the glassy state. Note that, for simplicity, all the 

BS constraints are fully attributed to the cations (rather than being equally shared by cations and 

oxygen atoms). As expected, Si atoms systematically create 4 BS constraints with their 4 O 

neighbors, as well as 5 BB constraints (i.e., the minimum number of independent angles that 

need to be fixed to define the SiO4 tetrahedron).58 In contrast, Al atoms exhibit a varying 

coordination number (i.e., 4 or 5 herein), so that the number of BS constraints created by Al 
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atoms is given by their coordination number. Similar to Si atoms, 5 BB constraints are attributed 

to 4-fold Al atoms. However, we assume that 5-fold coordinated Al atoms do not create any BB 

constraints since they exhibit an unstable deformed octahedral angular environment.53, 59–61 The 

enumeration of the topological constraints created by Ca atoms requires more attention 

considering the ionic nature of Ca–O bonds. First, since ionic Ca–O bonds are non-directional, Ca 

atoms do not exhibit any well-defined angular environments and, as such, do not create any BB 

constraints.58 Second, since BO and TO atoms are already fully charge-compensated by their Si 

or Al neighbors, we assume that Ca atoms only create strong BS constraints with their 

surrounding FO and NBO neighbors. Finally, each BO atom creates 1 BB constraint (e.g., to 

maintain Si/Al–O–Si/Al angles fixed around their average values), while each TO atom creates 3 

BB constraints to define its trigonal environment.30 In contrast, FO and NBO atoms do not create 

any BB constraint due to the non-directional nature of ionic Ca–O bonds. Figure 5 illustrates the 

different atomic species that are present in CAS glasses, as well as their associated local 

environments. These inputs then serve to compute the number of BS and BB constraints for each 

glass composition.

Figure 6 presents the number of radial BS, angular BB, and total (BS+BB) number of 

constraints per atom (nc) as a function of [Al2O3] – [CaO] for the entire CAS domain. We first use 

the equations presented in Sec. 3 to determine the fraction of each type of O species as well as 

the coordination number of Al atoms (Eqs. 2-9). Based on these fractions, we then determine the 

partial coordination numbers of Ca atoms (Eqs. 10-to-12). Using all these topological inputs, we 

calculate the number of BS and BB constraints per atoms by following the information given in 

Tab. 3. The results obtained from our analytical topological model are compared with those 

obtained by MD simulations. We first note that the number of BS constraints per atom decreases 

upon increasing [Al2O3] – [CaO], shows a minimum at [Al2O3] = [CaO], and then subsequently 

increases [Fig. 6(a)]. The initial decrease in the number of BS constraints per atom primarily arises 

from the high number of BS constraints created by Ca atoms at low [Al2O3] – [CaO], wherein most 

of the Ca atoms create 6 BS constraints with their surrounding NBO and FO atoms—thereby 

resulting in a glass that exhibits a large average coordination number. The average coordination 

number then decreases as Ca atoms get replaced by Al atoms. However, when [Al2O3] > [CaO], 
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the increase in the fraction of 5-fold Al and TO atoms eventually results in an increase in the 

number of BS constraints per atom upon increasing [Al2O3] – [CaO]. We then observe that the 

number BB constraints per atoms monotonically increases upon increasing [Al2O3] – [CaO] [Fig. 

6(b)]. This can be understood from the fact that atomic species which do not create any BB 

constraints (i.e., Ca, NBO, and FO) gradually disappear upon increasing [Al2O3] – [CaO]. 

Altogether, we find that the total number of constraints per atom remains fairly constant 

(around nc = 3) when [Al2O3] < [CaO] and notably increases when [Al2O3] > [CaO] [Fig. 6(c)]. This 

indicates that, at [Al2O3] < [CaO], the decrease in the number of BS per atom is perfectly balanced 

by the increase in the number of BB per atom. This behavior agrees with previous findings 

obtained in densified silicate glasses, wherein the number of BB constraints was found to adapt 

to the number of BS constraints.62 This behavior was attributed to a self-organization mechanism, 

wherein weaker angular constraints form or break in response to variations in the number of 

stronger radial constraints to ensure that the glass remains isostatic (nc = 3).63, 64

Importantly, we find that our analytical topological model matches well with MD results. 

Note that, although the fractions of oxygen species [Fig. 3] and the Ca–O partial coordination 

numbers [Fig. 4] solely depend on [Al2O3] – [CaO], the resulting number of constraints also 

depends on [SiO2] (which explains why the outcome of our model is represented as hatched areas 

in Fig. 6 rather than as a single line). 

The resulting rigidity diagram for the CAS ternary system is shown in Fig. 7(a). We note 

that CAS glasses are found to be systematically rigid (i.e., isostatic or stressed-rigid, nc ≥ 3) 

irrespectively of composition. Notably, the ternary map of the number of constraints per atom 

closely mimics that of the Young’s modulus of CAS glasses,11 which supports the present 

constraint enumeration—since the Young’s modulus has been shown to depend on the density 

of BS and BB constraints.42 The increase in the rigidity of CAS glasses upon increasing [Al2O3] – 

[CaO] also echoes the corresponding increase in glass transition temperature that is observed 

experimentally.65, 66 Overall, our model offers an accurate description of the atomic structural 

rigidity for CAS glasses while remaining analytical.A
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2. Liquid state

Next, we discuss how temperature may affect the rigidity diagram of the CAS ternary 

system. To this end, we adopt temperature-dependent constraint theory, wherein each 

constraint can be intact (at low temperature, i.e., in the glassy state) or thermally-broken (at high 

temperature, i.e., in the liquid or supercooled liquid state) based on the competition between 

the constraints’ free energy and available thermal energy.67–69 Although that would be desirable, 

we are presently unable to accurately determine the onset temperature associated with each 

type of constraint in CAS glasses by means of MD simulations. More work is needed to establish 

a clear, robust criterion to discriminate intact from broken constraints. In the following, rather 

than relying on unproven guesses regarding the temperature at which constraints break, we 

simply discuss how the breaking of each type of constraint affects the rigidity diagram of the CAS 

ternary system, namely, the location of the flexible and stressed-rigid domains. These successive 

constraints enumerations simulate the effect of increasing temperature (i.e., which results in 

more and more constraints being broken).

In the following, we discuss the successive effects of the breaking of (a) O–Al–O BB 

constraints, (b) Ca–FO constraints, and (c) BO and TO BB constraints—wherein these constraints 

are tentatively ranked from the weakest to the strongest, that, these constraints are ranked in 

terms of the temperature at which they are expected to break. This ranking is based on the 

following observations. First, the angular BB constraints associated with 4-fold Al atoms have 

been suggested by many studies to be notably weaker than those associated with Si atoms.27, 28, 

70–73 This has been attributed to the fact that the nearby presence of a charge-compensating 

cation tends to destabilize the angular environment of 4-fold coordinated Al atoms.28 Second, 

ionic Ca–FO constraints are expected to exhibit a low bond energy and, hence, to break at low 

temperature68. Finally, the BB constraints of BO and TO atoms (referred to as γ constraints) have 

been noted to break at low temperature.68, 69 It is worth nothing that this ranking is only tentative, 

and more work is clearly needed to carefully determine the onset temperature at which each 

type of constraint breaks (and ranking thereof).

Figure 7 shows how the successive breaking of each type of constraint affects the rigidity 

diagram of the CAS ternary system. We first note that the breaking of the BB of the Al atoms 
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drastically affects the rigidity diagram and results in the appearance of a flexible domain (nc < 3) 

in the SiO2-poor and CaO-rich regions [Fig. 7(b)]. This suggests that CAS systems may exhibit a 

composition-driven rigidity transition (i.e., from flexible, nc < 3, to stressed-rigid, nc > 3) in this 

range of temperature. The subsequent breaking of the Ca–FO BS constraints plays, overall, a 

more minor effect, but drastically reduces the rigidity of CaO-rich compositions [Fig. 7(c)]. Finally, 

the breaking of the BO and TO BB constraints causes all the compositions to become flexible—at 

the notable exception of pure SiO2, which becomes isostatic [Fig. 7(d)].

3. Correlations between network topology and glass/liquid properties

Interestingly, the ternary rigidity diagrams shown in Fig. 7 offer useful insights into the 

possible origin of the glass-forming ability of CAS systems. First, at the highest temperature 

considered herein [Fig. 7(d)], SiO2 becomes perfectly isostatic (nc = 3). This agrees with the 

excellent glass-forming ability of SiO2.19, 30 It should be noted that SiO2 exhibits a high glass 

transition temperature, so that, unlike other silicate glasses, the topological origin of its glass-

forming ability should indeed be assessed at high temperature (i.e., wherein the BB constraints 

of the BO atoms are thermally broken). The state of rigidity of the CAS ternary system at 

moderate temperature [Figs. 7(b) and 7(c)] also exhibits some correlations with glass-forming 

ability.74, 75 First, CaO-rich systems are highly flexible (nc < 3) and, hence—following Zachariasen’s 

viewpoint76—do not have the ability to form an extended 3-dimensional rigid network to prevent 

crystallization. In contrast, Al2O3-rich glasses are highly stressed-rigid (nc > 3). This may explain 

their low glass-forming ability, since the network does not exhibit enough structural flexibility to 

form a random (non-crystalline) network. The fact that SiO2-rich calcium silicate glasses are 

stressed-rigid also echoes the fact that such glasses tend to phase-separate.3, 74 It is also notable 

that the position of the isostatic boundary on the CaO–SiO2 joint (around (CaO)50(SiO2)50) 

corresponds to the compositional domain wherein calcium silicate glasses exhibit maximum 

glass-forming ability.77 Altogether, these results suggest that it is the rigidity at finite temperature 

(i.e., in the supercooled liquid state) rather than at low temperature (i.e., in the glassy state) that 

governs the glass-forming ability of silicate glasses.
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We further validate our model by exploring the existence of correlations between 

network topology and relevant glass/liquid experimental properties that have previously been 

suggested to be related to nc. Here, we specially focus on experimental glass transition 

temperature, molar volume, and melt fragility data sourced from Bechgaard et al.65 Molar 

volume are calculated using reported densities. Note that these data only cover a small portion 

of the CAS ternary—which prevents us from being fully conclusive.

Figure 8 shows the correlation between these properties and the number of constraints 

per atom nc—wherein nc is calculated by following the constraints enumeration assumptions 

used in Fig. 7b3 (i.e., wherein the BB of Al are considered broken). This choice is motivated from 

the fact that these properties are expected to be governed by the number of constraints per 

atom at moderate temperatures, that is, at temperatures slightly larger than Tg (in the 

supercooled liquid domain). Indeed, this is the range of temperatures that is relevant to describe 

the structure of the melt-forming glass during quenching, just before it freezes into a glass. This 

range of temperatures is expected (i) to govern the dynamical arrest that induces the glass 

transition (and, hence, that controls the value of Tg), (ii) to control the temperature-dependance 

of viscosity around Tg (as captured by the melt fragility index), and (iii) to describe the molar 

volume of the glass-forming melt as it freezes into a solid glass.

We first focus on the relationship between glass transition temperature (Tg) and number 

of constraints per atom nc. Indeed, Tg has been suggested to be essentially a measure of the 

connectivity of the glass network.78 As expected, we find Tg increases upon increases nc [Fig. 8(a)], 

which echoes the fact that higher temperatures are needed to melt glasses that are more rigid 

(higher nc)—since more topological constraints need to be thermally broken. Although we would 

need a more accurate knowledge of how the number of constraints depends on temperature to 

establish a quantitative relationship between Tg and atom nc,69, 79 we note that Tg exhibits a 

plateau in the flexible domain (nc < 3). This kind of plateau has previously been observed in 

various oxide glasses and has been suggested to be associated to domains wherein the glass 

transition temperature becomes equal to the onset temperature of a specific constraint—that is, 

the temperature at which a given constraint thermally break.67, 68, 79
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We then focus on the relationship between molar volume (Vm) and number of constraints 

per atom nc. Indeed, it has previously been observed that ideally-connected isostatic glasses 

(especially chalcogenide glasses) exhibit an optimal space-filling tendency, which manifests itself 

as a minimum in molar volume.80–86 Interestingly, we find that Vm exhibits a fair minimum around 

nc = 2.75, which is close to the isostatic threshold [Fig. 8(b)]. This suggests that the optimal space-

filling tendency of isostatic glasses might a be generic feature of the glassy state.

Last, we check the relationship between the melt fragility index (m) and number of 

constraints per atom nc. This is motivated from the fact that several chalcogenide and oxide 

glasses have been noted to exhibit a minimum in melt fragility around their isostatic threshold.82–

87 Although the lack of available experimental data prevents us from being fully conclusive, we 

do observe a strong correlation between m and nc—wherein flexible glasses (nc < 3) exhibit larger 

fragility values than their isostatic counterparts [Fig. 8(c)]. Additional measurements in the 

stressed-rigid domains (nc > 3) would be needed to test the existence of a minimum of fragility in 

this system.

5. Conclusion

This work establishes a sound model describing the network topology of CAS glasses as a 

function of their compositions. It is important to note that, although this model is informed and 

validated by MD simulations, it remains fully analytical and, hence, can bypass MD simulations 

to offer predictions of the topology of a given CAS glass based on the sole knowledge of its 

composition. Indeed, this model provides a direct access to the state of rigidity (flexible, isostatic, 

or stressed-rigid) of CAS glasses as a function of composition and temperature regime (which 

dictates if a certain constraint species is thermally active or not). The obtained temperature-

dependent ternary rigidity diagrams reveal the existence of correlations between network 

topology and glass-forming ability—wherein highly underconstrained (flexible) and highly 

overconstrained (stressed-rigid) systems exhibit low glass-forming ability, while, in turn, 

optimally-constrained glasses (isostatic) feature maximum glass-forming ability. Importantly, this 

study suggests that glass-forming ability is encoded in the network topology of the liquid state 

rather than that of the glassy state.
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It should be noted that, in general, a meaningful modeling exercise should attempt to 

describe a complex reality in the simplest fashion. Simplicity is especially important in the case 

of the topological design of glasses, since analytical models make it possible to offer direct 

predictions of the compositional dependence of glass properties. In turn, analytical models are 

differentiable and, hence, can be used for gradient-informed optimization approaches or to 

analytically predict which composition will maximize a given property. In that regard, although 

our model indeed relies on a certain number of assumptions, it eventually offers an excellent 

description of the number of bond-stretching and bond-bending constraints as a function of 

composition. As such, we believe that our model achieves a good balance between accuracy and 

simplicity, and, hence, can be used as a guide to identifying promising glass compositions.

Note that the modeling approach presented herein is based on generic physical/chemical 

behaviors (e.g., based on charge-balance, etc.). As such, we anticipate that our modeling 

approach could be used to analytically predict and extrapolate the topology of other families of 

silicate glasses, without the need for systematic MD simulations.
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List of Figure Captions

Figure 1. Atomic snapshots of (a) (CaO)25(SiO2)75, (b) (CaO)5�(SiO2)5�, and (c) (CaO)25(Al2O3)25(SiO2)5� 

glasses obtained from molecular dynamics simulations. O, Si, Al, and Ca atoms are colored in red, yell

gray, and purple, respectively. Bond cutoffs are and 2.345 for Si–O and Al–O pairs, respectively. 

All snap thick slices obtained using OVITO.51

Figure 2. Predicted (from the analytical model) and computed (from molecular dynamics simulations) 

numbers of 5-fold Al atoms per formula unit of glasses as a function of composition. Results are plotted as 

a function of the difference  the molar fractions of the Al2O3 and CaO oxides in the glass (“[Al2O3] 

– [CaO]”). The right-side positive domain (i.e., [Al2O3] – [CaO] > ) corresponds to Al-rich compositions, 

e the left-side negative domain ([Al2O3] – [CaO] corresponds to Ca-rich compositions. Note that 

several CAS glass compositions a 2O3] – [CaO] value.
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Figure 3. Predicted (from the analytical model) and computed (from molecular dynamics simulations) 

fractions of each type of oxygen species as a function of composition: (a) free oxygen (FO), (b) non-bridging 

oxygen (NBO), (c) bridging oxygen (BO), and (d) “tricluster” oxygen (TO). Results are plotted as a function 

of the difference bet een the molar fractions of the Al2O3 and CaO oxides in the glass (“[Al2O3] – [CaO]”). 

The right-side positive domain (i.e., [Al2O3] – [CaO corresponds to Al-rich compositions, ile the left-

side negative domain ([Al2O3] – [CaO] nds to Ca-rich compositions.

Figure 4. Predicted (from analytical model) and computed (from molecular dynamics simulations) values 

of the (a) Ca–FO, (b) Ca–NBO, (c) Ca–BO, and (d) Ca–TO partial coordination numbers of Ca atoms as a 

function of composition. Results are plotted as a function of the difference bet een the molar fractions of 

the Al2O3 and CaO oxides in the glass (“[Al2O3] – [CaO]”). The right-side positive domain (i.e., [Al2O3] – 

[CaO] > ) corresponds to Al-rich compositions,  the left-side negative domain ([Al2O3] – [CaO] 

corresponds to Ca-rich compositions.

Figure 5. Illustrations of the number of bond-stretching (BS) and bond-bending (BB) constraints created by 

(a) 4-fold Si, (b) 4-fold Al, (c) 5-fold Al, (d) Ca, (e) free oxygen (FO), (f) non-bridging oxygen (NBO), (g) 

bridging oxygen (BO), and (h) tri-cluster oxygen (TO) atoms. O, Si, Al, and Ca atoms are colored in red, 

yello gray, and purple, respectively. All snapshots are obtained by OVITO.51

Figure 6. Predicted (from analytical model) and computed (from molecular dynamics simulations) (a) 

number of bond-stretching (BS), (b) number of bond-bending (BB), and (c) total number of constraints per 

atom (nc) as a function of composition. Results are plotted as a function of the difference bet een the molar 

fractions of the Al2O3 and CaO oxides in the glass (“[Al2O3] – [CaO]”). The right-side positive domain (i.e., 

[Al2O3] – [CaO corresponds to Al-rich compositions, ile the left-side negative domain ([Al2O3] – 

[CaO] < ) corresponds to Ca-rich compositions. The red area indicates the number of constraints in the 

glasses associated a fixed value of [Al2O3] – [CaO], since several glasses different compositions 

(and, hence, different number of constraints) can be associ 2O3] – [CaO] value.

Figure 7. Ternary plots presenting the number of (1) radial bond-stretching (BS), (2) angular bond-bending 

(BB), and (3) total number of constraints (nc) per atom predicted by our analytical topological model. The 

constraints enumeration is conducted at (a) room temperature (glassy state), (b) the temperature at  

O–Al–O BB constraints break, (c) the temperature at Ca–FO BS constraints break, and (d) the 

temperature at hich BO and TO BB constraints break. The solid black line in the nc ternary maps (b3 and 

c3) indicates the location of the flexible-to-rigid transition (i.e., at nc = 3).

Figure 8. Experimental values of (a) glass transition temperature Tg, (b) molar volume Vm, and (c) melt 

fragility index m as a function of the number of constraints per atom nc (calculated for the range of 
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temperature considered in Fig. 7(b3). Experimental data are sourced from Bechgaard et al.65 Note that 

these data points only cover a small portion of the CaO–Al2O3–SiO2 (CAS) ternary system.

Table 1 Coefficients of the Jakse potential.8 The superscripts indicate the partial charge of each element.

Pair  (kcal/mol)Aij  (Å)σij (Å)ρij  (kcal/mol Å6)Cij

O-1.2–O-1.2 0.276344 3.6430 0.2630 1959.372

O-1.2–Si2.4 0.16120 2.5419 0.1560 1066.0667

O-1.2–Al1.8 0.172715 2.6067 0.1640 796.2097

O-1.2–Ca1.2 0.17732 2.9935 0.1780 793.0907

Si2.4–Si2.4 0.0276344 1.4408 0.0460 580.030

Si2.4–Al1.8 0.0575717 1.5056 0.0570 433.2063

Si2.4–Ca1.2 0.062177 1.8924 0.0630 529.445489

Al1.8–Al1.8 0.066783 1.5704 0.0680 323.548

Al1.8–Ca1.2 0.073691778 1.9572 0.0740 395.425476

Ca1.2–Ca1.2 0.080600 2.3440 0.0800 483.27068

Table 2 Summary of the predicted fractions of oxygen species in (CaO)x(Al2O3)y(SiO2)1–x–y glasses,  

and  represent the mole percent of [CaO] and [Al2O3], respectively. , , , and  are the � � �FO �NBO �BO �TO

fractions of free oxygen (FO), non-bridging oxygen (NBO), bridging oxygen (BO), and tricluster oxygen (TO) 

atoms, respectively. Equations are separated into three distinct compositional regimes as discussed in the 

text.

Fully-depolymerized 

regime

Partially-depolymerized 

regime

Fully-polymerized 

regime

Regime 
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�FO
―2 ― 3(� ― �)

2 + (� ― �)

�NBO
4 + 4(� ― �)

2 + (� ― �)

―2(� ― �)
2 + (� ― �)

�BO
2 + 3(� ― �)

2 + (� ― �) 4 ― 3(� ― �)

4 + 2(� ― �)

�TO
5(� ― �)

4 + 2(� ― �)

Table 3 Summary of the number of radial bond-stretching (BS) and angular bond-bending (BB) constraints 

created by each atomic species in calcium aluminosilicate glasses (at  temperature). For Al and O atoms, 

the BS and BB constraints are distinguished in terms of their coordination numbers. Note that the 

constraints created by Ca atoms depend on the type of O atoms they are connected to.

Glassy state

Species BS BB

Si atoms 4 5

Al atoms

4-fold Al 4 5

5-fold Al 5 0

Ca–O bonds 

         Ca–FO 1 /

         Ca–NBO 1 /

         Ca–BO 0 /

         Ca–TO 0 /

O atoms

FO / 0

NBO / 0

BO / 1

TO / 3
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