648 research outputs found

    Escherichia coli from urine of female patients with urinary tract infections is competent for intracellular bacterial community formation

    Get PDF
    Nearly 50% of women experience at least one urinary tract infection (UTI) in their lifetime. Studies with mice have revealed that uropathogenic Escherichia coli (UPEC) isolates invade superficial umbrella cells that line the bladder, allowing them to find a safe haven and subvert clearance by innate host responses. Rapid intracellular replication results in the formation of distinctive intracellular bacterial communities (IBCs). In this study, we evaluated whether UPEC strains cultured from the urine of women and classified as causing acute cystitis, recurrent cystitis, asymptomatic bacteriuria, or pyelonephritis could progress through the IBC cascade in a well-characterized mouse model of cystitis. Of 18 UPEC isolates collected from women, 15 formed IBCs. Variations in the size, number, and kinetics of IBC formation were observed with strains isolated from women with different clinical syndromes. Two of the three isolates that did not form IBCs when inoculated alone were able to do so when coinoculated with an isolate that was capable of generating IBCs. The mixed infections dramatically altered the behavior of the coinfecting bacteria relative to their behavior in a single infection. The study also showed that mice with five different genetic backgrounds can support IBC formation. Although UPEC isolates differ genetically in their virulence factors, the majority of UPEC isolates from different types of UTI proceed through the IBC pathway, confirming the generality of IBCs in UTI pathogenesis in mice

    Championing urban farmers in Kampala. Influences on local policy change in Uganda. Process and partnership for pro-poor policy change

    No full text
    This working paper presents an analysis of actors, events and influences affecting a policy change on urban agriculture in Kampala. It reviews the policy and institutional changes related to urban agriculture that occurred in Kampala from 1990 to 2006, and examines how and why they came about. The approach used here combined elements of three established methodologies, viz, episode studies; case study analysis; and outcome mapping. For this case study, the episode study component was central, with the case study and outcome mapping components used to cross-check and deepen the analysis. This information was assembled into three overlapping narratives: 1. A timeline of activities that played a role in changing attitudes and behaviour towards urban agriculture. 2. An analysis of the development of policies affecting urban agriculture in Kampala including the new ordinances. 3. A description of behaviour change of key actors related to the policy change These were summarised in a visual representation of the process and influences and analysed using a framework emphasising political context and the roles of evidence, linkages and external environment

    The atmosphere and architecture of WASP-189 b probed by its CHEOPS phase curve

    Get PDF
    Context. Gas giants orbiting close to hot and massive early-type stars can reach dayside temperatures that are comparable to those of the coldest stars. These ‘ultra-hot Jupiters’ have atmospheres made of ions and atomic species from molecular dissociation and feature strong day-to-night temperature gradients. Photometric observations at different orbital phases provide insights on the planet’s atmospheric properties. Aims. We aim to analyse the photometric observations of WASP-189 acquired with the Characterising Exoplanet Satellite (CHEOPS) to derive constraints on the system architecture and the planetary atmosphere. Methods. We implemented a light-curve model suited for an asymmetric transit shape caused by the gravity-darkened photosphere of the fast-rotating host star. We also modelled the reflective and thermal components of the planetary flux, the effect of stellar oblateness and light-travel time on transit-eclipse timings, the stellar activity, and CHEOPS systematics. Results. From the asymmetric transit, we measure the size of the ultra-hot Jupiter WASP-189 b, Rp = 1.600−0.016+0.017 RJ, with a precision of 1%, and the true orbital obliquity of the planetary system, Κp = 89.6 ± 1.2deg (polar orbit). We detect no significant hotspot offset from the phase curve and obtain an eclipse depth of ÎŽecl = 96.5−5.0+4.5 ppm, from which we derive an upper limit on the geometric albedo: Ag < 0.48. We also find that the eclipse depth can only be explained by thermal emission alone in the case of extremely inefficient energy redistribution. Finally, we attribute the photometric variability to the stellar rotation, either through superficial inhomogeneities or resonance couplings between the convective core and the radiative envelope. Conclusions. Based on the derived system architecture, we predict the eclipse depth in the upcoming Transiting Exoplanet Survey Satellite (TESS) observations to be up to ~165 ppm. High-precision detection of the eclipse in both CHEOPS and TESS passbands might help disentangle reflective and thermal contributions. We also expect the right ascension of the ascending node of the orbit to precess due to the perturbations induced by the stellar quadrupole moment J2 (oblateness)

    TESS and CHEOPS discover two warm sub-Neptunes transiting the bright K-dwarf HD 15906

    Get PDF
    We report the discovery of two warm sub-Neptunes transiting the bright (G = 9.5 mag) K-dwarf HD 15906 (TOI 461, TIC 4646810). This star was observed by the Transiting Exoplanet Survey Satellite (TESS) in sectors 4 and 31, revealing two small transiting planets. The inner planet, HD 15906 b, was detected with an unambiguous period but the outer planet, HD 15906 c, showed only two transits separated by ∌ 734 d, leading to 36 possible values of its period. We performed follow-up observations with the CHaracterising ExOPlanet Satellite (CHEOPS) to confirm the true period of HD 15906 c and improve the radius precision of the two planets. From TESS, CHEOPS, and additional ground-based photometry, we find that HD 15906 b has a radius of 2.24 ± 0.08 R⊕ and a period of 10.924709 ± 0.000032 d, whilst HD 15906 c has a radius of 2.93+0.07−0.06 R⊕ and a period of 21.583298+0.000052−0.000055 d. Assuming zero bond albedo and full day-night heat redistribution, the inner and outer planet have equilibrium temperatures of 668 ± 13 K and 532 ± 10 K, respectively. The HD 15906 system has become one of only six multiplanet systems with two warm (â‰Č 700 K) sub-Neptune sized planets transiting a bright star (G ≀ 10 mag). It is an excellent target for detailed characterization studies to constrain the composition of sub-Neptune planets and test theories of planet formation and evolution

    Refining the properties of the TOI-178 system with CHEOPS and TESS

    Get PDF
    Context. The TOI-178 system consists of a nearby late K-dwarf transited by six planets in the super-Earth to mini-Neptune regime, with radii ranging from ~1.1 to 2.9 R⊕ and orbital periods between 1.9 and 20.7 days. All planets but the innermost one form a chain of Laplace resonances. Mass estimates derived from a preliminary radial velocity (RV) dataset suggest that the planetary densities do not decrease in a monotonic way with the orbital distance to the star, contrary to what one would expect based on simple formation and evolution models. Aims. To improve the characterisation of this key system and prepare for future studies (in particular with JWST), we performed a detailed photometric study based on 40 new CHEOPS visits, one new TESS sector, and previously published CHEOPS, TESS, and NGTS data. Methods. First we updated the parameters of the host star using the new parallax from Gaia EDR3. We then performed a global analysis of the 100 transits contained in our data to refine the physical and orbital parameters of the six planets and study their transit timing variations (TTVs). We also used our extensive dataset to place constraints on the radii and orbital periods of potential additional transiting planets in the system. Results. Our analysis significantly refines the transit parameters of the six planets, most notably their radii, for which we now obtain relative precisions of â‰Č3%, with the exception of the smallest planet, b, for which the precision is 5.1%. Combined with the RV mass estimates, the measured TTVs allow us to constrain the eccentricities of planets c to g, which are found to be all below 0.02, as expected from stability requirements. Taken alone, the TTVs also suggest a higher mass for planet d than that estimated from the RVs, which had been found to yield a surprisingly low density for this planet. However, the masses derived from the current TTV dataset are very prior-dependent, and further observations, over a longer temporal baseline, are needed to deepen our understanding of this iconic planetary system

    The HD 93963 A transiting system: A 1.04 d super-Earth and a 3.65 d sub-Neptune discovered by TESS and CHEOPS

    Get PDF
    We present the discovery of two small planets transiting HD 93963A (TOI-1797), a GOV star (M* = 1.109 ± 0.043M⊙, R* = 1.043 ± 0.009 R⊙) in a visual binary system. We combined TESS and CHEOPS space-borne photometry with MuSCAT 2 ground-based photometry, ‘Alopeke and PHARO high-resolution imaging, TRES and FIES reconnaissance spectroscopy, and SOPHIE radial velocity measurements. We validated and spectroscopically confirmed the outer transiting planet HD 93963 A c, a sub-Neptune with an orbital period of Pc ≈ 3.65 d that was reported to be a TESS object of interest (TOI) shortly after the release of Sector 22 data. HD 93963 A c has amass of Mc = 19.2 ± 4.1 M⊕ and a radius of Rc = 3.228 ± 0.059 R⊕, implying a mean density of ρc = 3.1 ± 0.7 g cm-3. The inner object, HD 93963 A b, is a validated 1.04 d ultra-short period (USP) transiting super-Earth that we discovered in the TESS light curve and that was not listed as a TOI, owing to the low significance of its signal (TESS signal-to-noise ratio ≈6.7, TESS + CHEOPS combined transit depth Db = 141.5−8.3+8.5 ppm). We intensively monitored the star with CHEOPS by performing nine transit observations to confirm the presence of the inner planet and validate the system. HD 93963 A b is the first small (Rb = 1.35 ± 0.042 R⊕) USP planet discovered and validated by TESS and CHEOPS. Unlike planet c, HD 93963 Ab is not significantly detected in our radial velocities (Mb = 7.8 ± 3.2 M⊕). The two planets are on either side of the radius valley, implying that they could have undergone completely different evolution processes. We also discovered a linear trend in our Doppler measurements, suggesting the possible presence of a long-period outer planet. With a V-band magnitude of 9.2, HD 93963 A is among the brightest stars known to host a USP planet, making it one of the most favourable targets for precise mass measurement via Doppler spectroscopy and an important laboratory to test formation, evolution, and migration models of planetary systems hosting ultra-short period planets

    The stable climate of KELT-9b

    Get PDF
    Even among the most irradiated gas giants, so-called ultra-hot Jupiters, KELT-9b stands out as the hottest planet thus far discovered with a dayside temperature of over 4500 K. At these extreme irradiation levels, we expect an increase in heat redistribution efficiency and a low Bond albedo owed to an extended atmosphere with molecular hydrogen dissociation occurring on the planetary dayside. We present new photometric observations of the KELT-9 system throughout 4 full orbits and 9 separate occultations obtained by the 30 cm space telescope CHEOPS. The CHEOPS bandpass, located at optical wavelengths, captures the peak of the thermal emission spectrum of KELT-9b. In this work we simultaneously analyse CHEOPS phase curves along with public phase curves from TESS and Spitzer to infer joint constraints on the phase curve variation, gravity-darkened transits, and occultation depth in three bandpasses, as well as derive 2D temperature maps of the atmosphere at three different depths. We find a day-night heat redistribution efficiency of ~0.3 which confirms expectations of enhanced energy transfer to the planetary nightside due to dissociation and recombination of molecular hydrogen. We also calculate a Bond albedo consistent with zero. We find no evidence of variability of the brightness temperature of the planet, excluding variability greater than 1

    Potential Roles for Bacteriophages in Reducing <em>Salmonella</em> from Poultry and Swine

    Get PDF
    This chapter discusses application of natural parasites of bacteria, bacteriophages (phages), as a promising biological control for Salmonella in poultry and swine. Many studies have shown phages can be applied at different points from farm-to-fork, from pre to post slaughter, to control the spread of Salmonella in the food chain. Pre-slaughter applications include administering phages via oral gavage, in drinking water and in feed. Post slaughter applications include adding phages to carcasses and during packaging of meat products. The research discussed in this chapter demonstrate a set of promising data that relate to the ability of phages to reduce Salmonella colonisation and abundance. Collectively the studies support the viability of phage as antimicrobial prophylactics and therapeutics to prevent and control Salmonella in the food chain

    The HD 93963 A transiting system: A 1.04 d super-Earth and a 3.65 d sub-Neptune discovered by TESS and CHEOPS

    Get PDF
    We present the discovery of two small planets transiting HD 93963A (TOI-1797), a GOV star (M* = 1.109 ± 0.043M⊙, R* = 1.043 ± 0.009 R⊙) in a visual binary system. We combined TESS and CHEOPS space-borne photometry with MuSCAT 2 ground-based photometry, `Alopeke and PHARO high-resolution imaging, TRES and FIES reconnaissance spectroscopy, and SOPHIE radial velocity measurements. We validated and spectroscopically confirmed the outer transiting planet HD 93963 A c, a sub-Neptune with an orbital period of Pc ≈ 3.65 d that was reported to be a TESS object of interest (TOI) shortly after the release of Sector 22 data. HD 93963 A c has amass of Mc = 19.2 ± 4.1 M⊕ and a radius of Rc = 3.228 ± 0.059 R⊕, implying a mean density of ρc = 3.1 ± 0.7 g cm-3. The inner object, HD 93963 A b, is a validated 1.04 d ultra-short period (USP) transiting super-Earth that we discovered in the TESS light curve and that was not listed as a TOI, owing to the low significance of its signal (TESS signal-to-noise ratio ≈6.7, TESS + CHEOPS combined transit depth Db = 141.5−8.3+8.5 ppm). We intensively monitored the star with CHEOPS by performing nine transit observations to confirm the presence of the inner planet and validate the system. HD 93963 A b is the first small (Rb = 1.35 ± 0.042 R⊕) USP planet discovered and validated by TESS and CHEOPS. Unlike planet c, HD 93963 Ab is not significantly detected in our radial velocities (Mb = 7.8 ± 3.2 M⊕). The two planets are on either side of the radius valley, implying that they could have undergone completely different evolution processes. We also discovered a linear trend in our Doppler measurements, suggesting the possible presence of a long-period outer planet. With a V-band magnitude of 9.2, HD 93963 A is among the brightest stars known to host a USP planet, making it one of the most favourable targets for precise mass measurement via Doppler spectroscopy and an important laboratory to test formation, evolution, and migration models of planetary systems hosting ultra-short period planets. Tables of DRS and PIPE extracted lightcurves and detrended data are only available at the CDS via anonymous ftp to ftp://cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/667/A
    • 

    corecore