10 research outputs found

    Minimizing Turns in Watchman Robot Navigation: Strategies and Solutions

    Full text link
    The Orthogonal Watchman Route Problem (OWRP) entails the search for the shortest path, known as the watchman route, that a robot must follow within a polygonal environment. The primary objective is to ensure that every point in the environment remains visible from at least one point on the route, allowing the robot to survey the entire area in a single, continuous sweep. This research places particular emphasis on reducing the number of turns in the route, as it is crucial for optimizing navigation in watchman routes within the field of robotics. The cost associated with changing direction is of significant importance, especially for specific types of robots. This paper introduces an efficient linear-time algorithm for solving the OWRP under the assumption that the environment is monotone. The findings of this study contribute to the progress of robotic systems by enabling the design of more streamlined patrol robots. These robots are capable of efficiently navigating complex environments while minimizing the number of turns. This advancement enhances their coverage and surveillance capabilities, making them highly effective in various real-world applications.Comment: 6 pages, 3 figure

    Securing Pathways with Orthogonal Robots

    Full text link
    The protection of pathways holds immense significance across various domains, including urban planning, transportation, surveillance, and security. This article introduces a groundbreaking approach to safeguarding pathways by employing orthogonal robots. The study specifically addresses the challenge of efficiently guarding orthogonal areas with the minimum number of orthogonal robots. The primary focus is on orthogonal pathways, characterized by a path-like dual graph of vertical decomposition. It is demonstrated that determining the minimum number of orthogonal robots for pathways can be achieved in linear time. However, it is essential to note that the general problem of finding the minimum number of robots for simple polygons with general visibility, even in the orthogonal case, is known to be NP-hard. Emphasis is placed on the flexibility of placing robots anywhere within the polygon, whether on the boundary or in the interior.Comment: 8 pages, 5 figure

    Bleeding symptoms in patients diagnosed as type 3 von Willebrand disease : Results from 3WINTERS-IPS, an international and collaborative cross-sectional study

    Get PDF
    Background Type 3 von Willebrand's disease (VWD) patients present markedly reduced levels of von Willebrand factor and factor VIII. Because of its rarity, the bleeding phenotype of type 3 VWD is poorly described, as compared to type 1 VWD. Aims To evaluate the frequency and the severity of bleeding symptoms across age and sex groups in type 3 patients and to compare these with those observed in type 1 VWD patients to investigate any possible clustering of bleeding symptoms within type 3 patients. Methods We compared the bleeding phenotype and computed the bleeding score (BS) using the MCMDM-1VWD bleeding questionnaire in patients enrolled in the 3WINTERS-IPS and MCMDM-1VWD studies. Results In 223 unrelated type 3 VWD patients, both the BS and the number of clinically relevant bleeding symptoms were increased in type 3 as compared to type 1 VWD patients (15 versus 6 and 5 versus 3). Intracranial bleeding, oral cavity, hemarthroses, and deep hematomas were at least five-fold over-represented in type 3 VWD. A more severe bleeding phenotype was evident in patients having von Willebrand factor antigen levels <20 IU/dL at diagnosis in the two merged cohorts. In type 3 patients, there was an apparent clustering of hemarthrosis with gastrointestinal bleeding and epistaxis, whereas bleeding after surgery or tooth extraction clusters with oral bleeding and menorrhagia. Conclusions In the largest cohort of type 3 VWD patients, we were able to describe a distinct clinical phenotype that is associated with the presence of a more severe hemostatic defect.Peer reviewe

    Exergoeconomic optimization of a solar driven system with reverse osmosis desalination unit and phase change material thermal energy storages

    No full text
    The goal of the current article is to suggest a novel solar system to produce power, fresh water, and cooling. As solar energy is unavailable at nights, a novel thermal storage system (TES) based on phase change material (PCM) is used to store the required energy for night demands. The main novelty of the current configuration for the PCM is on the dynamic modelling of the PCM to capture the performance of the system during a day and perform the exergoeconomic analysis. After receiving the solar energy, a gas turbine and a Kalina cycle would supply the electricity of the grid. Additionally, the cooling capacity would be provided by the LNG stream for the domestic users, while reverse osmosis (RO) unit would produce the fresh water. To examine the performance of the system, the output parameters of the exergoeconomic analysis in addition to exergy destructions for each sub-system are computed. The output results indicate that the exergy efficiency is about 21.19%, while that of the energy is 41.00%. The cooling load of the suggested system is also 0.709 MW, while the rate of generated electricity and fresh water are 5.73 MW and 7905.7 m(3)/day, respectively. The exergoeconomic analysis also showed that the total cost rate of the system is equal to 25.20 /GJ,andthelevelizedcostofelectricityis0.1275/GJ, and the levelized cost of electricity is 0.1275 /kWh. Moreover, the impacts of input parameters on the respective output parameters are analyzed and optimized to reach the best performance of the system. Results indicated that the gas turbine's pressure ratio should be approximately 8, while the needed values for the basic ammonia concentration and LNG pressure ratio are about 0.53 and 8.23, respectively

    Genotypes of European and Iranian patients with type 3 von Willebrand disease enrolled in 3WINTERS-IPS

    No full text
    Type 3 von Willebrand disease (VWD3) is a rare and severe bleeding disorder characterized by often undetectable von Willebrand factor (VWF) plasma levels, a recessive inheritance pattern, and heterogeneous genotype. The objective of this study was to identify the VWF defects in 265 European and Iranian patients with VWD3 enrolled in 3WINTERS-IPS (Type 3 Von Willebrand International Registries Inhibitor Prospective Study). All analyses were performed in centralized laboratories. The VWF genotype was studied in 231 patients with available DNA (121 [115 families] from Europe [EU], and 110 [91 families] from Iran [IR]). Among 206 unrelated patients, 134 were homozygous (EU/IR 5 57/77) and 50 were compound heterozygous (EU/IR 5 43/7) for VWF variants. In 22 patients, no or only one variant was found. A total of 154 different VWF variants (EU/IR 5 101/58 [5 shared]) were identified among the 379 affected alleles (EU/IR 5 210/169), of which 48 (EU/IR 5 18/30) were novel. The variants p.Arg1659*, p.Arg1853*, p.Arg2535*, p.Cys275Ser, and delEx1_Ex5 were found in both European and Iranian VWD3 patients. Sixty variants were identified only in a single allele (EU/IR 5 50/10), whereas 18 were recurrent ($3 patients) within 144 affected alleles. Nine large deletions and one large insertion were found. Although most variants predicted null alleles, 21% of patients carried at least 1 missense variant. VWD3 genotype was more heterogeneous in the European population than in the Iranian population, with nearly twice as many different variants. A higher number of novel variants were found in the Iranian VWD3 patients
    corecore