27 research outputs found

    Purified dietary red and white meat proteins show beneficial effects on growth and metabolism of young rats compared to casein and soy protein

    Get PDF
    This study compared the effects of casein, soy protein (SP), red (RMP) and white meat (WMP) proteins on growth and metabolism of young rats. Compared to casein, the ratio of daily feed intake to daily body weight gain of rats was not changed by meat protein but reduced by SP by 93.3% (P<0.05). Feeding RMP and WMP reduced the liver total cholesterol (TC) contents by 24.3% and 17.8% respectively (P<0.05). Only RMP increased plasma HDL-cholesterol concentrations (by 12.7%, P<0.05), whereas SP increased plasma triacylglycerol, TC and LDL-cholesterol concentrations by 23.7%, 19.5% and 61.5% respectively (P<0.05). Plasma essential and total amino acid concentrations were increased by WMP (by 18.8% and 12.4%, P<0.05) but reduced by SP (by 28.3 and 37.7%, P<0.05). Twenty five liver proteins were differentially expressed in response to different protein sources. Therefore, meat proteins were beneficial for growth and metabolism of young rats compared to casein and SP

    Metatranscriptome analysis of the microbial fermentation of dietary milk proteins in the murine gut

    Get PDF
    Undigestible food ingredients are converted by the microbiota into a large range of metabolites, predominated by short chain fatty acids (SCFA). These microbial metabolites are subsequently available for absorption by the host mucosa and can serve as an energy source. Amino acids fermentation by the microbiota expands the spectrum of fermentation end-products beyond acetate, propionate and butyrate, to include in particular branched-SCFA. Here the long-term effects of high protein-diets on microbial community composition and functionality in mice were analyzed. Determinations of the microbiota composition using phylogenetic microarray (MITChip) technology were complemented with metatranscriptome and SCFA analyses to obtain insight in in situ expression of protein fermentation pathways and the phylogenetic groups involved. High protein diets led to increased luminal concentrations of branched-SCFA, in accordance with protein fermentation in the gut. Bacteria dominantly participating in protein catabolism belonged to the Lachnospiraceae, Erysipelotrichaceae and Clostridiaceae families in both normal- and high- protein diet regimes. This study identifies the microbial groups involved in protein catabolism in the intestine and underpins the value of in situ metatranscriptome analyses as an approach to decipher locally active metabolic networks and pathways as a function of the dietary regime, as well as the phylogeny of the microorganisms executing them

    Probing metabolic memory in the hepatic response to fasting

    No full text
    Tissues may respond differently to a particular stimulus if they have been previously exposed to that same stimulus. Here we tested the hypothesis that a strong metabolic stimulus such as fasting may influence the hepatic response to a subsequent fast and thus elicit a memory effect. Overnight fasting in mice significantly increased plasma free fatty acids, glycerol, Ī²-hydroxybutyrate and liver triglycerides, and decreased plasma glucose, plasma triglycerides, and liver glycogen levels. In addition, fasting dramatically changed the liver transcriptome, upregulating genes involved in gluconeogenesis and in uptake, oxidation, storage, and mobilization of fatty acids, and downregulating genes involved in fatty acid synthesis, fatty acid elongation/desaturation, and cholesterol synthesis. Fasting also markedly impacted the liver metabolome, causing a decrease in the levels of numerous amino acids, glycolytic intermediated, TCA cycle intermediates, and nucleotides. However, these fasting-induced changes were unaffected by two previous overnight fasts. Also, no significant effect was observed of prior fasting on glucose tolerance. Finally, analysis of the effect of fasting on the transcriptome in hepatocyte humanized mouse livers indicated modest similarity in gene regulation in mouse and human liver cells. In general, genes involved in metabolic pathways were up- or downregulated to a lesser extent in human liver cells than mouse liver cells. In conclusion, we found that previous exposure to fasting in mice did not influence the hepatic response to a subsequent fast, arguing against the concept of metabolic memory in the liver. Our data provide a useful resource for the study of liver metabolism during fasting

    Systematic comparison of transcriptomes of Caco-2 cells cultured under different cellular and physiological conditions

    No full text
    There is a need for standardized in vitro models emulating the functionalities of the human intestinal tract to study human intestinal health without the use of laboratory animals. The Caco-2 cell line is a well-accepted and highly characterized intestinal barrier model, which has been intensively used to study intestinal (drug) transport, hostā€“microbe interactions and chemical or drug toxicity. This cell line has been cultured in different in vitro models, ranging from simple static to complex dynamic microfluidic models. We aimed to investigate the effect of these different in vitro experimental variables on gene expression. To this end, we systematically collected and extracted data from studies in which transcriptome analyses were performed on Caco-2 cells grown on permeable membranes. A collection of 13 studies comprising 100 samples revealed a weak association of experimental variables with overall as well as individual gene expression. This can be explained by the large heterogeneity in cell culture practice, or the lack of adequate reporting thereof, as suggested by our systematic analysis of experimental parameters not included in the main analysis. Given the rapidly increasing use of in vitro cell culture models, including more advanced (micro) fluidic models, our analysis reinforces the need for improved, standardized reporting protocols. Additionally, our systematic analysis serves as a template for future comparative studies on in vitro transcriptome and other experimental data

    Effects of high dietary chicken protein on obesity development of rats fed high-fat diets

    Get PDF
    This study explored the effects of dietary chicken protein at high (HCK, 40 % E) or normal (CK, 20 % E) levels on obesity development of rats fed high-fat diets. Compared with the CK diet, the HCK diet reduced body weight gain (by 15 %), epididymal adipose tissue mass (by 18.4 %), and adipocyte size (by 18.8 %) significantly without affecting the food intake of rats. It also reduced blood insulin and glycosylated serum protein (GSP) significantly by 45.4 % and 14.3 %, respectively; however, the OGTT and HOMA-IR results were not different. The HCK diet downregulated EAT transcriptomics related to the biosynthesis of cholesterol, triglycerides, and fatty acids, which were highly correlated with the most downregulated hub genes, Insig1, Srebf2, Hmgcs1, and Fasn. Therefore, high dietary chicken protein content reduced body fat accumulation, blood insulin, and GSP, and downregulated EAT transcriptomics related to lipid biosynthesis in rats fed high-fat diets

    Exposure to low-dose perfluorooctanoic acid promotes hepatic steatosis and disrupts the hepatic transcriptome in mice

    No full text
    Objective: Perfluoroalkyl substances (PFAS) are man-made chemicals with demonstrated endocrine-disrupting properties. Exposure to perfluorooctanoic acid (PFOA) has been linked to disturbed metabolism via the liver, although the exact mechanism is not clear. Moreover, information on the metabolic effects of the new PFAS alternative GenX is limited. We examined whether exposure to low-dose PFOA and GenX induces metabolic disturbances in mice, including NAFLD, dyslipidemia, and glucose tolerance, and studied the involvement of PPARĪ±. Methods: Male C57BL/6J wildtype and PPARĪ±āˆ’/āˆ’ mice were given 0.05 or 0.3 mg/kg body weight/day PFOA, or 0.3 mg/kg body weight/day GenX while being fed a high-fat diet for 20 weeks. Glucose and insulin tolerance tests were performed after 18 and 19 weeks. Plasma metabolite levels were measured next to a detailed assessment of the liver phenotype, including lipid content and RNA sequencing. Results: Exposure to high-dose PFOA decreased body weight and increased liver weight in wildtype and PPARĪ±āˆ’/āˆ’ mice. High-dose but not low-dose PFOA reduced plasma triglycerides and cholesterol, which for triglycerides was dependent on PPARĪ±. PFOA and GenX increased hepatic triglycerides in a PPARĪ±-dependent manner. RNA sequencing showed that the effects of GenX on hepatic gene expression were entirely dependent on PPARĪ±, while the effects of PFOA were mostly dependent on PPARĪ±. In the absence of PPARĪ±, the involvement of PXR and CAR became more prominent. Conclusion: Overall, we show that long-term and low-dose exposure to PFOA and GenX disrupts hepatic lipid metabolism in mice. Whereas the effects of PFOA are mediated by multiple nuclear receptors, the effects of GenX are entirely mediated by PPARĪ±. Our data underscore the potential of PFAS to disrupt metabolism by altering signaling pathways in the liver

    Estrogen receptor alpha (ERĪ±)ā€“mediated coregulator binding and gene expression discriminates the toxic ERĪ± agonist diethylstilbestrol (DES) from the endogenous ERĪ± agonist 17Ī²-estradiol (E2)

    No full text
    Diethylstilbestrol (DES) is a synthetic estrogen and proven human teratogen and carcinogen reported to act via the estrogen receptor Ī± (ERĪ±). Since the endogenous ERĪ± ligand 17Ī²-estradiol (E2) does not show these adverse effects to a similar extent, we hypothesized that DESā€™ interaction with the ERĪ± differs from that of E2. The current study aimed to investigate possible differences between DES and E2 using in vitro assays that detect ERĪ±-mediated effects, including ERĪ±-mediated reporter gene expression, ERĪ±-mediated breast cancer cell (T47D) proliferation and ERĪ±-coregulator interactions and gene expression in T47D cells. Results obtained indicate that DES and E2 activate ERĪ±-mediated reporter gene transcription and T47D cell proliferation in a similar way. However, significant differences between DES- and E2-induced binding of the ERĪ± to 15 coregulator motifs and in transcriptomic signatures obtained in the T47D cells were observed. It is concluded that differences observed in binding of the ERĪ± with several co-repressor motifs, in downregulation of genes involved in histone deacetylation and DNA methylation and in upregulation of CYP26A1 and CYP26B1 contribute to the differential effects reported for DES and E2.</p

    Differential gene expression in iPSC-derived human intestinal epithelial cell layers following exposure to two concentrations of the Short Chain Fatty Acids butyrate, propionate and acetate

    No full text
    Intestinal epithelial cells and the intestinal microbiota are in a mutualistic relationship that is dependent on communication. This communication is multifaceted, but one aspect is communication through compounds produced by the microbiota such as the short-chain fatty acids (SCFAs) butyrate, propionate and acetate. Studying the effects of SCFAs and especially butyrate in intestinal epithelial cell lines like Caco-2 cells has been proven problematic. In contrast to the in vivo intestinal epithelium, Caco-2 cells do not use butyrate as an energy source, leading to a build-up of butyrate. Therefore, we used human induced pluripotent stem cell derived intestinal epithelial cells, grown as a cell layer, to study the effects of butyrate, propionate and acetate on whole genome gene expression in the cells. For this, cells were exposed to concentrations of 1 and 10 mM of the individual short-chain fatty acids for 24 hours. Unique gene expression profiles were observed for each of the SCFAs in a concentration-dependent manner. Evaluation on both an individual gene level and pathway level showed that butyrate induced the biggest effects followed by propionate and then acetate. Several known effects of SCFAs on intestinal cells were confirmed, such as effects on metabolism and immune responses. The changes in metabolic pathways in the intestinal epithelial cell layers in this study demonstrate that there is a switch in energy source from glucose to SCFAs, thus induced pluripotent stem cell derived intestinal epithelial cell are responding in a similar manner to SCFAs as in vivo intestinal tissues. Overall design: Induced pluripotent stem cell derived intestinal epithelial cells were exposed to butyric acid (NaB; 1 or 10mM), acetic acid (NaA 1 or 10 mM), propionic acid, (NaP 1 or 10 mM) or control treatment (water) for 24 hours, and subjected to gene expression profiling by RNA-sequencing

    Predicting the murine enterocyte metabolic response to diets that differ in lipid and carbohydrate composition

    No full text
    The small intestine serves as gatekeeper at the interface between body and diet and is thought to play an important role in the etiology of obesity and associated metabolic disorders. A computational modelling approach was used to improve our understanding of the metabolic responses of epithelial cells to different diets. A constraint based, mouse-specific enterocyte metabolic model (named mmu-ENT717) was constructed to describe the impact of four fully characterized semi-purified diets, that differed in lipid and carbohydrate composition, on uptake, metabolism, as well as secretion of carbohydrates and lipids. Our simulation results predicted luminal sodium as a limiting factor for active glucose absorption; necessity of apical localization of glucose transporter GLUT2 for absorption of all glucose in the postprandial state; potential for gluconeogenesis in enterocytes; and the requirement of oxygen for the formation of endogenous cholesterol needed for chylomicron formation under luminal cholesterol-free conditions. In addition, for a number of enzymopathies related to intestinal carbohydrate and lipid metabolism it was found that their effects might be ameliorated through dietary interventions. In conclusion, our improved enterocyte-specific model was shown to be a suitable platform to study effects of dietary interventions on enterocyte metabolism, and provided novel and deeper insights into enterocyte metabolism.</p

    Predicting the murine enterocyte metabolic response to diets that differ in lipid and carbohydrate composition

    No full text
    The small intestine serves as gatekeeper at the interface between body and diet and is thought to play an important role in the etiology of obesity and associated metabolic disorders. A computational modelling approach was used to improve our understanding of the metabolic responses of epithelial cells to different diets. A constraint based, mouse-specific enterocyte metabolic model (named mmu-ENT717) was constructed to describe the impact of four fully characterized semi-purified diets, that differed in lipid and carbohydrate composition, on uptake, metabolism, as well as secretion of carbohydrates and lipids. Our simulation results predicted luminal sodium as a limiting factor for active glucose absorption; necessity of apical localization of glucose transporter GLUT2 for absorption of all glucose in the postprandial state; potential for gluconeogenesis in enterocytes; and the requirement of oxygen for the formation of endogenous cholesterol needed for chylomicron formation under luminal cholesterol-free conditions. In addition, for a number of enzymopathies related to intestinal carbohydrate and lipid metabolism it was found that their effects might be ameliorated through dietary interventions. In conclusion, our improved enterocyte-specific model was shown to be a suitable platform to study effects of dietary interventions on enterocyte metabolism, and provided novel and deeper insights into enterocyte metabolism.</p
    corecore