1,600 research outputs found
Generalized Centrifugal Force Model for Pedestrian Dynamics
A spatially continuous force-based model for simulating pedestrian dynamics
is introduced which includes an elliptical volume exclusion of pedestrians. We
discuss the phenomena of oscillations and overlapping which occur for certain
choices of the forces. The main intention of this work is the quantitative
description of pedestrian movement in several geometries. Measurements of the
fundamental diagram in narrow and wide corridors are performed. The results of
the proposed model show good agreement with empirical data obtained in
controlled experiments.Comment: 10 pages, 14 figures, accepted for publication as a Regular Article
in Physical Review E. This version contains minor change
Identifying Patient Groups based on Frequent Patterns of Patient Samples
Grouping patients meaningfully can give insights about the different types of
patients, their needs, and the priorities. Finding groups that are meaningful
is however very challenging as background knowledge is often required to
determine what a useful grouping is. In this paper we propose an approach that
is able to find groups of patients based on a small sample of positive examples
given by a domain expert. Because of that, the approach relies on very limited
efforts by the domain experts. The approach groups based on the activities and
diagnostic/billing codes within health pathways of patients. To define such a
grouping based on the sample of patients efficiently, frequent patterns of
activities are discovered and used to measure the similarity between the care
pathways of other patients to the patients in the sample group. This approach
results in an insightful definition of the group. The proposed approach is
evaluated using several datasets obtained from a large university medical
center. The evaluation shows F1-scores of around 0.7 for grouping kidney injury
and around 0.6 for diabetes
Increasing weaning age of piglets from 4 to 7 weeks reduces stress, increases post-weaning feed intake but does not improve intestinal functionality
This study tested the hypothesis that late weaning and the availability of creep feed during the suckling period compared with early weaning, improves feed intake, decreases stress and improves the integrity of the intestinal tract. In this study with 160 piglets of 16 litters, late weaning at 7 weeks of age was compared with early weaning at 4 weeks, with or without creep feeding during the suckling period, on post-weaning feed intake, plasma cortisol (as an indicator of stress) and plasma intestinal fatty acid binding protein (I-FABP; a marker for mild intestinal injury) concentrations, intestinal morphology, intestinal (macro)molecular permeability and intestinal fluid absorption as indicators of small intestinal integrity. Post-weaning feed intake was similar in piglets weaned at 4 weeks and offered creep feed or not, but higher (P <0.001) in piglets weaned at 7 weeks with a higher (P <0.05) intake for piglets offered creep feed compared with piglets from whom creep feed was witheld. Plasma cortisol response at the day of weaning was lower in piglets weaned at 7 weeks compared with piglets weaned at 4 weeks, and creep feed did not affect cortisol concentration. Plasma I-FABP concentration was not affected by the age of weaning and creep feeding. Intestinal (macro)molecular permeability was not affected by the age of weaning and creep feeding. Both in uninfected and enterotoxigenic Escherichia coli-infected small intestinal segments net fluid absorption was not affected by the age of weaning or creep feeding. Creep feeding, but not the age of weaning, resulted in higher villi and increased crypt depth. In conclusion, weaning at 7 weeks of age in combination with creep feeding improves post-weaning feed intake and reduces weaning stress but does not improve functional characteristics of the small intestinal mucos
A Modification of the Social Force Model by Foresight
The motion of pedestrian crowds (e.g. for simulation of an evacuation
situation) can be modeled as a multi-body system of self driven particles with
repulsive interaction. We use a few simple situations to determine the simplest
allowed functional form of the force function. More complexity may be necessary
to model more complex situations. There are many unknown parameters to such
models, which have to be adjusted correctly. The parameters can be related to
quantities that can be measured independently, like step length and frequency.
The microscopic behavior is, however, only poorly reproduced in many
situations, a person approaching a standing or slow obstacle will e.g. show
oscillations in position, and the trajectories of two persons meeting in a
corridor in opposite direction will be far from realistic and somewhat erratic.
This is inpart due to the assumption of instantaneous reaction on the momentary
situation. Obviously, persons react with a small time lag, while on the other
hand they will anticipate changing situations for at least a short time. Thus
basing the repulsive interaction on a (linear) extrapolation over a short time
(e.g. 1 s) eliminates the oscillations at slowing down and smoothes the
patterns of giving way to others to a more realistic behavior. A second problem
is the additive combination of binary interactions. It is shown that combining
only a few relevant interactions gives better model performance.Comment: 6 pages, 5 figures, Preprint from PED 2008 (Wuppertal
Quantitative analysis of pedestrian counterflow in a cellular automaton model
Pedestrian dynamics exhibits various collective phenomena. Here we study
bidirectional pedestrian flow in a floor field cellular automaton model. Under
certain conditions, lane formation is observed. Although it has often been
studied qualitatively, e.g., as a test for the realism of a model, there are
almost no quantitative results, neither empirically nor theoretically. As basis
for a quantitative analysis we introduce an order parameter which is adopted
from the analysis of colloidal suspensions. This allows to determine a phase
diagram for the system where four different states (free flow, disorder, lanes,
gridlock) can be distinguished. Although the number of lanes formed is
fluctuating, lanes are characterized by a typical density. It is found that the
basic floor field model overestimates the tendency towards a gridlock compared
to experimental bounds. Therefore an anticipation mechanism is introduced which
reduces the jamming probability.Comment: 11 pages, 12 figures, accepted for publication in Phys. Rev.
Constant net-time headway as key mechanism behind pedestrian flow dynamics
We show that keeping a constant lower limit on the net-time headway is the
key mechanism behind the dynamics of pedestrian streams. There is a large
variety in flow and speed as functions of density for empirical data of
pedestrian streams, obtained from studies in different countries. The net-time
headway however, stays approximately constant over all these different data
sets. By using this fact, we demonstrate how the underlying dynamics of
pedestrian crowds, naturally follows from local interactions. This means that
there is no need to come up with an arbitrary fit function (with arbitrary fit
parameters) as has traditionally been done. Further, by using not only the
average density values, but the variance as well, we show how the recently
reported stop-and-go waves [Helbing et al., Physical Review E, 75, 046109]
emerge when local density variations take values exceeding a certain maximum
global (average) density, which makes pedestrians stop.Comment: 7 pages, 7 figure
Pedestrian flows in bounded domains with obstacles
In this paper we systematically apply the mathematical structures by
time-evolving measures developed in a previous work to the macroscopic modeling
of pedestrian flows. We propose a discrete-time Eulerian model, in which the
space occupancy by pedestrians is described via a sequence of Radon positive
measures generated by a push-forward recursive relation. We assume that two
fundamental aspects of pedestrian behavior rule the dynamics of the system: On
the one hand, the will to reach specific targets, which determines the main
direction of motion of the walkers; on the other hand, the tendency to avoid
crowding, which introduces interactions among the individuals. The resulting
model is able to reproduce several experimental evidences of pedestrian flows
pointed out in the specialized literature, being at the same time much easier
to handle, from both the analytical and the numerical point of view, than other
models relying on nonlinear hyperbolic conservation laws. This makes it
suitable to address two-dimensional applications of practical interest, chiefly
the motion of pedestrians in complex domains scattered with obstacles.Comment: 25 pages, 9 figure
Coronary Atherosclerosis- imaging, biology and mechanics
In this thesis, (intravascular) imaging, pathobiology and biomechanical modelling were combined to:
1) describe existing animal models for atherosclerosis and discuss the role biomechanics play in plaque development in these models;
2) further elucidate the involvement of the biomechanical factors wall shear stress and helical flow in the development of coronary atherosclerotic plaques, and to assess the potential of these biomechanical factors and of specific lipoproteins as new biomarkers for atherosclerotic disease development;
3) extend the interpretation of imaging data derived from two commonly used invasive imaging techniques to improve plaque and patient risk-stratification
- …