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CKConv: Continuous Kernel Convolution For Sequential Data

David W. Romero 1 Anna Kuzina 1 Erik J. Bekkers 2 Jakub M. Tomczak 1 Mark Hoogendoorn 1

Abstract
Conventional neural architectures for sequential
data present important limitations. Recurrent net-
works suffer from exploding and vanishing gradi-
ents, small effective memory horizons, and must
be trained sequentially. Convolutional networks
are unable to handle sequences of unknown size
and their memory horizon must be defined a priori.
In this work, we show that all these problems can
be solved by formulating convolutional kernels
in CNNs as continuous functions. The resulting
Continuous Kernel Convolution (CKConv) allows
us to model arbitrarily long sequences in a paral-
lel manner, within a single operation, and with-
out relying on any form of recurrence. We show
that Continuous Kernel Convolutional Networks
(CKCNNs) obtain state-of-the-art results in multi-
ple datasets, e.g., permuted MNIST, and, thanks
to their continuous nature, are able to handle
non-uniformly sampled datasets and irregularly-
sampled data natively. CKCNNs match or per-
form better than neural ODEs designed for these
purposes in a much faster and simpler manner.

1. Introduction
Recurrent Neural Networks (RNNs) have long governed
tasks handling sequential data. Their main ingredients are
recurrent units: network components endowed with a recur-
rence property which grants RNNs the ability to be unrolled
for arbitrarily many steps, and thus to handle sequences of
arbitrary size. In practice, however, the effective memory
horizon of RNNs, i.e., the number of steps the network can
retain information from, has proven to be surprisingly small.

This is most notably due to the vanishing gradients problem
(Hochreiter, 1991; Bengio et al., 1994). In fact, it is the same
recurrent nature of RNNs that grants them the ability to be
unrolled for arbitrarily many steps which is responsible for
inducing vanishing gradients (Pascanu et al., 2013). This, in

1Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
2University of Amsterdam, Amsterdam, The Netherlands. Corre-
spondence to: David. W. Romero <d.w.romeroguzman@vu.nl>.

turn, hinders learning from the far past, and thereby induces
a small effective memory horizon.

Convolutional networks (CNNs) have proven a strong alter-
native to recurrent architectures for several tasks as long as
relevant input dependencies fall within their memory hori-
zon, e.g., Conneau et al. (2016). CNNs avoid the training
instability and vanishing / exploding gradients characteristic
of RNNs by circumventing Back-Propagation Through Time
(BPTT) altogether. However, these architectures parameter-
ize their convolutional kernels as a sequence of independent
weights. As a consequence, their memory horizon must be
defined a priori, and the extent of the memory horizon is
directly attached to a proportional growth of the model size.

Inspired by works modeling convolutional kernels as contin-
uous functions, e.g., Wu et al. (2019), we propose to replace
the conventional discrete convolutional kernel formulation
in sequence modeling architectures with a continuous one.
Thanks to this formulation, our proposed Continuous Kernel
Convolutions (CKConvs)1 enjoy the following properties:

• Analogously to RNNs, CKConvs are able to consider ar-
bitrarily large memory horizons within a single operation.

• Contrary to RNNs, CKConvs do not rely on any form
of recurrency. Hence, Continuous Kernel Convolutional
Networks (CKCNNs) do not suffer from vanishing / ex-
ploding gradients or small effective memory horizons.

• Contrary to conventional CNNs, CKCNNs detach the
memory horizon –often referred to as receptive field– from
(i) the depth of the network, (ii) the dilation factor used,
and (iii) the parameter count of the architecture.

• CKCNNs do not make use of Back-Propagation Through
Time. Consequently, CKCNNs can be trained in parallel.

• Since continuous kernels can be evaluated at arbitrary
positions, CKConvs easily handle irregularly sampled
data as well as data sampled at different sampling rates.

We demonstrate that these properties are not only theoretical
but present in practice as well. With a practical and simple
implementation, CKCNNs obtain outstanding results for a
large series of tasks encompassing stress tests, real appli-
cations with continuous and discrete data, as well as non-
uniformly sampled datasets and irregularly sampled data.

1Code available at github.com/dwromero/ckconv
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Continuous Kernel Convolutional Networks

2. Related Work
Lessen the vanishing and exploding gradient problem.
Vanishing and exploding gradients are a long-standing prob-
lem for recurrent networks (Hochreiter, 1991). We identify
three classes of methods that aim to alleviate this problem:
The first class, exemplified by gating mechanisms, aims to
preserve information from the far past and enhance gra-
dient flow by updating their hidden representation only
when update gates are activated, e.g., LSTMs (Hochreiter
& Schmidhuber, 1997), GRUs (Chung et al., 2014), gated
convolutions (Dauphin et al., 2017). The second class, ex-
emplified by unitary recurrent units, parameterizes recur-
rent connections to have unitary eigenvalues, e.g., Arjovsky
et al. (2016); Mhammedi et al. (2017); Lezcano-Casado &
Martı́nez-Rubio (2019). This is motivated by the fact that
recurrent connections with eigenvalues other than one are re-
sponsible for vanishing and exploding gradients in recurrent
architectures (Pascanu et al., 2013; Arjovsky et al., 2016).
The third class is given by convolutional networks (CNNs),
e.g., Oord et al. (2016); Dai et al. (2017); Bai et al. (2018a).
CNNs elude exploding and vanishing gradients by avoiding
recurrent connections and Back-Propagation Through Time
altogether. Our method belongs to this class and thus does
not suffer from vanishing or exploding gradients. However,
as our continuous kernel parameterization allows for arbi-
trarily large memory horizons, CKConvs are able to handle
arbitrarily large sequences under a fixed parameter budget.

Implicit neural representations. Implicit neural represen-
tations aim to represent data by encoding it in the weights of
a neural network (Park et al., 2019; Mescheder et al., 2019;
Sitzmann et al., 2020). By doing so, implicit representations
exhibit numerous advantages over conventional (discrete)
ones, e.g., memory efficiency, analytic differentiability, etc.

Since we model convolutional kernels as continuous func-
tions and parameterize them via neural networks, our ap-
proach can be understood as implicitly representing the
convolutional kernels of a conventional CNN. Different is
the fact that these convolutional kernels are not known a pri-
ori but learned as part of the optimization task of the CNN.
However, making the connection between implicit neural
representations and continuous kernel formulations explicit
brings substantial insights for the construction of these ker-
nels. In particular, it motivates the use of sine nonlinearities
to parameterize the convolutional kernels, which leads to
significant improvements over the ReLU, LeakyReLU, and
Swish nonlinearities used so far for this purpose (Sec. 4.3).

Continuous kernel formulation. Continuous formulations
to convolutional kernels were introduced as a powerful alter-
native to handle irregularly sampled 3D data (Schütt et al.,
2017; Simonovsky & Komodakis, 2017; Wang et al., 2018;
Wu et al., 2019). As discrete convolutions learn independent
weights for specific relative positions, they cannot handle

irregularly sampled data effectively. After its introduction,
most subsequent work has focused on 3D point-cloud appli-
cations, e.g., Thomas et al. (2018); Shi et al. (2019); Mao
et al. (2019); Hu et al. (2020); Fuchs et al. (2020).

Our paper introduces a new flavor of applications for which
continuous kernels are advantageous. To the best of our
knowledge, we are first in observing the potential of contin-
uous kernel convolutions for sequence modeling and exploit
its relation to recurrent architectures. Though our formula-
tion is similar to those proposed before, we exploit its con-
nection to implicit neural representations to provide a practi-
cal kernel parameterization with much better reconstruction
properties than previously proposed ones (Sec. 4.3).

3. The Convolution Operation
In this section we introduce the convolution operation and
outline kernel parameterizations often used in practice.

Notation. We denote by [n] the set {0,1,2, . . . , n}. Bold
capital and lowercase letters depict vectors and matrices,
e.g., x, W, sub-indices are used to index vectors, e.g., x =
{xc}NC

c=1 , parentheses are used for time indexing, e.g., x(τ)
is the value of x at time-step τ , and sequences are depicted
by calligraphic letters, e.g., X = {x(τ)}NX

τ=0.

3.1. Centered and Causal Convolutions

Let x ∶ R→ RNc andψ ∶ R→ RNc be a vector valued signal
and kernel on R, such that x = {xc}NC

c=1 and ψ = {ψc}NC

c=1 .
The convolution is defined as:

(x ∗ψ)(t) =
NC

∑
c=1
∫
R
xc(τ)ψc(t − τ)dτ. (1)

In practice, however, the input signal x is gathered via some
sampling procedure. Consequently, the convolution is ef-
fectively performed between the input signal described as
a sequence of finite length X = {x(τ)}NX

τ=0 and a convolu-
tional kernel K = {ψ(τ)}NX

τ=0 described in the same way:

(x ∗ψ)(t) =
NC

∑
c=1

NX/2

∑
τ=−NX/2

xc(τ)ψc(t − τ). (2)

Here, any values x(τ) falling outside of X are padded by a
constant value often defined as zero (Fig. 1a).

The convolutional kernel is commonly centered around the
point of calculation t. This can be undesirable for sequence
modeling, as future input values {x(t − τ)}−1τ=−NX/2

are con-
sidered during the operation. This is solved by providing
a causal formulation to the convolution: a formulation in
which the convolution at time-step t only depends on input
values at time-steps (t − τ) ≤ t (Fig. 1b):

(x ∗ψ)(t) =
NC

∑
c=1

t

∑
τ=0

xc(τ)ψc(t − τ). (3)
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(a) Centered Convolution (b) Causal Convolution

Figure 1. Centered and causal convolutions.

This is easily implemented via asymmetrical padding.
We consider causal convolutions as default in this document,
yet our analyses are valid for centered convolutions too.

3.2. Convolutions with Discrete Kernels

By a large margin, the most used parameterization of convo-
lutional kernels ψ is by describing them as a finite sequence
of NK + 1 independent weights K = {ψ(τ)}NK

τ=0 with equal
number of channels to that of the input x (Fig. 1). As
these weights are independent of one another, NK is usually
much smaller than the input length as to keep the parameter
count of the model tractable: NK ≪ NX . As a result, the
convolution operation is reduced to:

(x ∗ψ)(t) =
NC

∑
c=1

NK

∑
τ=0

xc(τ)ψc(t − τ), (4)

where values x(τ) falling outside of X are equally padded.
This parameterization presents the following limitations:

• The memory horizon NK must be defined a priori.

• Since NK ≪ NX , this parameterization implicitly as-
sumes that the mapping (x ∗ψ)(t) at position t is only
dependent on the input at positions (t − τ) up to τ = NK
steps in the past. Consequently, no functions depending
on inputs x(t − τ) for τ > NK can be modeled.

• The most general selection of NK is given by a global
memory horizon: NK = NX . Unfortunately, as discrete
convolutional kernels are modeled as a sequence of in-
dependent weights, this incurs an extreme growth of the
model size and rapidly becomes statistically unfeasible.

Dilated Convolution. In order to alleviate the limitations
mentioned previously, it has been proposed to dilate the
sequence parameterizing the convolutional kernel K by a
factor η. That is, to stretch the distances between filter
positions ψ(τ), ψ(τ + 1) by a factor η as to cover a larger
memory horizon without any additional parameters:

(x ∗η ψ)(t) =
NC

∑
c=1

NK

∑
τ=0

xc(ητ)ψc(t − ητ). (5)

Though this formulation alleviates some of the limitations
outlined before, it introduces some other important ones:

• Dilated convolutions are unable to model functions de-
pending on input values within x(ητ) and x(η(τ + 1)).

• Several authors propose to use dilated convolutions with
varying dilation factors as a function of the network depth,
e.g., Oord et al. (2016). By carefully selecting the dilation
factor at every layer, one can guarantee that some kernel
hits each input within the memory horizon of the network.
Due to the extreme sparsity of this formulation, however,
it is difficult to estimate the effective amount of process-
ing applied to the input. Furthermore, this structure ties
together the memory horizon, the depth, and the layer-
wise dilation factors of the network, which effectively
constrains the flexibility of the neural architecture design.

In contrast to (dilated) discrete convolutions, our proposed
formulation allows handling arbitrarily long sequences with
arbitrarily large, dense memory horizons in a single layer
and under a fixed parameter budget.

4. Continuous Kernel Convolution
In this section, we introduce our approach. First, we ana-
lyze its properties and illustrate its connection to recurrent
units. Subsequently, we discuss concrete parameterizations
of continuous convolutional kernels, illustrate its connection
to implicit neural representations and empirically show that
our final kernels are able to fit complex nonlinear functions.

4.1. Overview

We formulate the convolutional kernel ψ as a continuous
function parameterized by a small neural network MLPψ.
MLPψ receives a relative position (t−τ) as input and outputs
the value of the convolutional kernel at that positionψ(t−τ).
Hence, we can construct an arbitrarily large convolutional
kernel K={ψ(t − τ)}NK

τ=0 by providing an equally large
sequence of relative positions {t − τ}NK

τ=0 to MLPψ (Fig. 2).
For NK = NX , we can sample a convolutional kernel of
equal size to the input sequence X. In other words, we are
able to construct global memory horizons without modifying
the structure of the network or adding more parameters.

The Continuous Kernel Convolution (CKConv) is given by:

(x ∗ψ)(t) =
NC

∑
c=1

t

∑
τ=0

xc(τ)MLPψc (t − τ). (6)

Irregularly sampled data. CKConvs are able to handle
irregularly sampled and partially observed data natively.
To this end, it is sufficient to sample MLPψ at positions for
which the input signal is known and perform the convolution
operation with the sampled kernel. This formulation holds
as long as the input is not very non-uniformly sampled. In
such cases, an inverse density function over the samples can
be incorporated to provide an unbiased estimation of the
convolution response (see Appx. A.1, Wu et al. (2019)).

Data sampled at different sampling rates. In addition,
CKConvs can also be used to process data sampled at differ-
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Figure 2. Continuous kernel convolution. The continuous convolutional kernel, parameterized by an small neural network MLPψ ,
receives a sequence of relative positions {∆τi=(t − τi)}Ni=0 as input and outputs the value of the kernel at those positions {ψ(∆τi)}Ni=0.
Consequently, arbitrarily large convolutional kernels can be constructed by providing an equally large sequence of relative positions.

ent sampling rates. Consider the convolution (x ∗ψ)sr1 be-
tween an input signal x and a continuous convolutional ker-
nel ψ both sampled at a sampling rate sr1. Now, if the con-
volution receives the same input signal sampled at a different
sampling rate sr2, one can simply sample the convolutional
kernel at the sampling rate sr2 to perform an “equivalent”
convolution: (x∗ψ)sr2 . As shown in Appx.A.2, it holds that:

(x ∗ψ)sr2(t) ≈
sr2
sr1

(x ∗ψ)sr1(t). (7)

That is, convolutions calculated at different sampling rates
sr1 and sr2 are approximately equal up to a normalization
factor sr2

sr1
. Hence, CKCNNs (i) can be deployed at sampling

rates different than those seen during training, and (ii) can
be trained on data with varying temporal resolutions.

We note that the features listed in this section are hardly
attainable by regular architectures, with an exception being
those that provide a continuous-time interpretation to RNNs,
e.g., Gu et al. (2020); Kidger et al. (2020).

4.2. Linear Recurrent Units Are CKConvs

Interesting insights can be obtained by drawing connections
between convolutions and recurrent units. In particular, we
can show that linear recurrent units can be described as a
CKConv with a particular family of convolutional kernels:
exponential functions. Besides providing a generalization
to recurrent units, this equality provides a fresh and intuitive
view to the analysis of vanishing and exploding gradients.

Recurrent unit. Given an input sequence X = {x(τ)}NX

τ=0,
a recurrent unit is constructed as:

h(τ) = σ(Wh(τ − 1) +Ux(τ)) (8)
ỹ(τ) = softmax(Vh(τ)), (9)

where U,W,V parameterize the input-to-hidden, hidden-
to-hidden and hidden-to-output connections of the unit.
h(τ), ỹ(τ) depict the hidden representation and the output
at time-step τ , and σ represents a point-wise non-linearity.

We are able to represent a linear recurrent unit, i.e., a recur-
rent unit with σ=Id, as a convolutional operation. To see

this, consider the definition of the unit hidden representation
h(τ) (Eq. 8) unrolled for t steps. We obtain that:

h(t) =Wt+1h(−1) +
t

∑
τ=0

WτUx(t − τ), (10)

where h(−1) is the initial state of the hidden representation.
We see that in fact it corresponds to a convolution between
an input signal x and a convolutional kernel ψ given by:2,3

x = [x(0),x(1), ...,x(t − 1),x(t)] (11)

ψ = [U,WU, ...,Wt−1U,WtU] (12)

h(t) =
t

∑
τ=0

x(τ)ψ(t − τ) =
t

∑
τ=0

x(t − τ)ψ(τ). (13)

Drawing this equality yields some important insights:

The cause of the exploding and vanishing gradients.
The correspondence in Eqs. 11-13 intuitively depicts the
root of the exploding and vanishing gradient problem. It
stems from sequence elements x(t − τ) τ steps back in
the past being multiplied with an effective convolutional
weight ψ(τ)=WτU. For eigenvalues of W other than
one, the resulting convolutional kernel ψ can only represent
functions that either grow or decrease exponentially as a
function of the sequence length (Figs. 3a, 3b). As a result,
the contribution of input values in the past either rapidly
fades away or governs the updates of the model parameters.
Since exponentially growing gradients lead to divergence,
the eigenvalues of W for converging architectures are often
smaller than 1. This explains why the effective memory
horizon of recurrent networks is so small.

Linear recurrent units are a subclass of CKConvs.
Linear recurrent units can be described as a convolution
between the input and a very specific class of convolutional
kernels: exponential functions (Eq. 12). In general, however,
convolutional kernels are not restricted to this functional
class. This can be seen in conventional (discrete) convolu-

2We discard h(−1) as it only describes the initialization of h.
3Though it is likely that this results has been observed before,

we were not able to find a reference for it. This is perhaps a
result of this equality being disregarded due to its non-practical
significance for conventional discrete kernel parameterizations.
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(a) Exp. decreasing kernel (b) Exp. increasing kernel

(c) Discrete conv. kernel (d) Continuous conv. kernel

Figure 3. Functional family of recurrent units, discrete convolu-
tions and CKConvs. For eigenvalues of W, λ≠1, recurrent units
are only able to describe exponentially decreasing or increasing
functions (Figs. 3a, 3b). Discrete convolutions can describe arbi-
trary functions within their memory horizon but are zero otherwise
(Fig. 3c). Conversely, CKConvs are able to define arbitrary long
memory horizons, and thus are able to describe arbitrary functions
upon the entire input sequence (Fig. 3d).

tions, whose kernels are able to model complex functions
within their memory horizon. Unfortunately, discrete convo-
lutions use a predefined, small kernel size, and thus possess
a restricted memory horizon. This is equivalent to imposing
an effective magnitude of zero to all input values outside the
memory horizon (Fig. 3c). CKConvs, on the other hand, are
able to define arbitrary large memory horizons. For memory
horizons of size equal to the input length, CKConvs are able
to model complex functions upon the entire input (Fig. 3d).

In conclusion, we illustrate that CKConvs are also a gener-
alization of (linear) recurrent architectures which allows for
parallel training and enhanced expressivity. This statement
also holds for nonlinear recurrent units, in which case it is
sufficient to stack CKConvs and point-wise non-linearities.

4.3. The Continuous Convolutional Kernel MLPψ

So far we have illustrated the advantages of a continuous
convolutional kernel formulation without providing a con-
crete parameterization to MLPψ . In this section, we formal-
ize this parameterization, analyze its properties and show
empirically that it is able to fit very complex functions.

Overview. Let {∆τi=(t − τi)}Ni=0 be a sequence of relative
positions. The convolutional kernel MLPψ is parameterized
by a conventional L-layer neural network:

h(1)(∆τi) = σ(w(1)∆τi + b(1)) (14)

h(l)(∆τi) = σ(W(l)h(l−1)(∆τi) + b(l)) (15)

ψ(∆τi) =W(L)h(L−1)(∆τi) + b(L), (16)

where σ is a pointwise non-linearity, e.g., ReLU. As stated in

Sec. 2, our approach can be thought of as providing implicit
neural representations to the unknown convolutional kernels
ψ of a conventional convolutional architecture.

The importance of initialization. There is an important
distinction between implicit neural representations and con-
ventional neural applications regarding the assumed distri-
bution of the input. Conventional applications assume the
distribution of the input features to be centered around the
origin. This is orthogonal to implicit neural representations,
where the spatial distribution of the output, i.e., the value
of the function being implicitly represented, is uniformly
distributed. Consequently, conventional initialization tech-
niques lead to poor performance (“ReLU 0-Init”, Fig. 5).

For ReLU networks, function approximation is equivalent
to an approximation via a max-spline basis (Balestriero &
Baraniuk, 2018). The expressiveness of such an approxima-
tion is determined by the number of knots the basis provides,
i.e., places where a non-linearity bends the space. Naturally,
the better the placing of these knots at initialization, the
faster the approximation may converge. For applications for
which the data values are centered around zero, placing the
knots at initialization around zero is a good inductive bias.4

However, for a spatially uniform distributed input, the knots
should be uniformly distributed as well (Fig. 4).

An improved initialization scheme. For ReLU layers
y=max{0,Wx + b}, knots appear at the point where
0=Wx+b. In order to place knots at x=0, it is sufficient to
set the bias to zero: b=0. For uniformly distributed knots in
the range [xmin,xmax], one must solve the ReLU equation
for uniformly distributed points in that range: 0=Wxunif+b.
It results that b= −Wxunif, for arbitrary values of W.

In multilayered networks (Eqs. 14-16), the approximation
problem can be understood as reconstructing the target func-
tion in terms of a basis h(L−1). Consequently, the expres-
sivity of the network is determined by the number of knots
in h(L−1). In theory, each ReLU layer is able to divide the
linear regions of the previous layer in exponentially many
sub-regions (Montufar et al., 2014; Serra et al., 2018), or
equivalently, to induce an exponential layer-wise increase
in the number of knots. For the first layer, the positions of
the knots are described by the bias term. For subsequent
layers, these positions also depend on W(l). Unfortunately,
as depicted by Hanin & Rolnick (2019), slight modifications
of {W(l),b(l)} can strongly simplify the landscape of the
linear regions, and thus the knots (Fig. 6). More importantly,
Hanin & Rolnick (2019) show that the number of linear
regions at initialization is actually equal to a constant times
the number of neurons in the network (with a constant very
close to one in their experiments). In addition, they show
that this behavior barely changes throughout training.

4This is why b=0 is common in regular initialization schemes.



Continuous Kernel Convolutional Networks

Figure 4. An step function approximated via a spline basis (left)
and a periodic basis (right). As the target function is defined
uniformly on a given interval, uniformly initializing the knots of
the spline basis provides faster and better approximations. If all the
knots are initialized at zero, the best approximation at initialization
is given by a straight line. Periodic bases periodically bend space.
As a consequence, they can be tuned much easier in order to better
approximate the target function at arbitrary points in space.

We observe that finding an initialization with an exponen-
tial number of knots is a cumbersome and unstable proce-
dure. In fact, this is not always possible, and, whenever
possible, this initialization strongly restricts the values the
weights W(l) can assume. Consequently, based on the
findings of Hanin & Rolnick (2019), we utilize an initial-
ization procedure with which the total number of knots is
equal to the number of neurons of the network. This is
obtained by replicating the initialization procedure of the
first layer throughout the network: For randomly initialized
weights W(l), the bias term b(l) is given by the equality
b(l)=−W(l)h(l)(xunif), where xunif is a vector of uniformly
distributed points in the range [xmin,xmax]. Interestingly, we
observe that this simple initialization strategy consistently
outperforms the standard initialization for a large range
of target functions (“ReLU Unif-Init”, Fig. 5). Unfortu-
nately, however, ReLU networks still show large difficulties
in representing very nonlinear and non-smooth functions.
In Appx. C.1 (Fig. 7), we illustrate that other popular alter-
natives, i.e., LeakyReLU, Swish, exhibit the same behavior.

The miracle of periodic bases. Recently, Sitzmann et al.
(2020) proposed to replace ReLU by Sine in order to learn
implicit neural representations. Intriguingly, this slight mod-
ification allows our kernels to approximate any provided
function to near perfection –even a sequence of random
values!– (“Sine”, Fig. 5). A possible explanation of these
astonishing results can be given via our prior analysis:

Periodic bending of the space.
A Sine layer is given by: y = Sin(ω0[Wx + b]), where
ω0 works as a prior on the variability of the target function.
Orthogonal to ReLU layers, Sine layers periodically bend
the space. As a result, the same y value is obtained for all
bias values b′i=bi+n2π∥Wi,∶∥−1, ∀n ∈ Z. This is important
from a spline approximation perspective. While for ReLU
layers a unique value of b exists that bends the space at
a desired position, infinitely many values of b do so for
Sine ones. Resultantly, Sine layers are much more robust
to parameter selection, and can be tuned to benefit pattern
approximation at arbitrary –or even multiple– positions in

Figure 5. Function approximation via ReLU and Sine networks.
ReLU networks fail to model very discontinuous or non-linear
functions. Though improvements result by imposing a uniform
distribution on the knots at initialization, these approximations
remain poor. Contrarily, Sine networks quickly and seamlessly
approximate very complex non-linear discontinuous functions.

space (Fig. 4). We conjecture that this behavior leads to
much more reliable approximations and faster convergence.

An exponentially big Fourier basis.
It is not surprising for a (large) basis of phase-shifted sinu-
soidal functions to be able to approximate arbitrary func-
tions with high fidelity. This result was first observed over
two centuries ago by Fourier (1807) and lies at the core of
the well-known Fourier transform, which states that any
integrable function can be described as a linear combination
of an infinite basis of phase-shifted sinusoidal functions.

Sitzmann et al. (2020) proposed an initialization of {W(l)}
that allows for the construction of deep Sine networks able
to periodically divide the space into exponentially many re-
gions as a function of depth. Intuitively, approximations via
Sine networks can be seen in terms of an exponentially large
Fourier-like basis. We conjecture that is this exponential
growth combined with the periodicity of sine which allows
for astonishingly good approximations: the more terms in a
Fourier transform, the better the approximation becomes.

Interestingly, our experiments suggest that a uniformly dis-
tributed initialization of the bias term b ∼ U(−1,1) also
leads to better and faster convergence for Sine networks.

5. Experiments
We validate our approach across a large variety of tasks
and against a large variety of existing models. In particular,
we benchmark its ability to handle long-term dependencies
as well as non-uniformly sampled datasets and irregularly
sampled data. A complete description of the datasets used
as well as additional experiments and ablation studies can
be found in the Appendix (Appx. B, C).
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Experimental details. We parameterize all our convolu-
tional kernels as a 3-layered MLP with Sine nonlinearities.
We use weight normalization in MLPψ: Wi,∶ = gi

Vi,∶

∥Vi,∶∥

(Salimans & Kingma, 2016), which allows for separate
control of the magnitude gi and the direction Vi,∶

∥Vi,∶∥
of the

mappings, and consistently leads to better and faster conver-
gence. All our networks follow the structure shown in Fig. 8
and vary only in the number of blocks and channels. Spec-
ifications on the architectures and hyperparameters used
are given in Appx. D. We leverage the convolution the-
orem to speed up convolution operations in our networks:
(f ∗ψ)=F−1{F{f}⋅F{ψ}}, with F the Fourier transform.

Stress experiments. First, we validate that the memory
horizon of shallow CKCNNs is not restricted by architec-
tural choices. To this end, we evaluate if a shallow CKCNN
is able to solve the Copy Memory and the Adding Problem
tasks (Hochreiter & Schmidhuber, 1997) for sequences of
varying sizes in the range [100,6000].
Our results (Tab. 1) show that a shallow CKCNN solves
both problems for all sequence lengths considered without
structural modifications. This is of large contrast to recurrent
networks, which could not solve the copy problem at all and
could solve the sum problem up to 200 steps. TCNs with
k=7, n=7, on the other hand, were able to solve both tasks
for up to 1000 steps. Longer sequences were out of reach as
their architecture constraints their memory horizon a priori.

Discrete sequences. One might think that the inherent con-
tinuous nature of our kernels could restrict their applicability
to tasks of the same nature, e.g., time-series. However, as
depicted in Sec. 4.3, Sine nonlinearities allow our convolu-
tional kernels to faithfully model complex non-continuous
functions. Consequently, we validate the applicability of
CKConvs for discrete sequence modeling tasks: sMNIST,
pMNIST (Le et al., 2015) and sCIFAR10 (Trinh et al., 2018).

Our results (Tab. 2) show that shallow CKCNNs outperform
strong recurrent and convolutional models. A small CK-
CNN (100K params.) obtains state-of-the-art on sMNIST
with a model 80× smaller (99.31). A wider CKCNN (1M
params) increases this result to 99.32. In addition, we see
an improvement of 0.8% in pMNIST over the best model
of size ≤100K, and a wider shallow CKCNN achieves state-
of-the-art on pMNIST (98.54). For sCIFAR10, a small
CKCNN obtains similar results to a self-attention model 5×
bigger. Nevertheless, a wider variant only slightly improves
accuracy and falls behind the state-of-the-art in this dataset.

Time-series modeling. Next, we evaluate CKCNNs on
time-series data. To this end, we consider the CharacterTra-
jectories (CT) (Bagnall et al., 2018) and the Speech Com-
mands (SC) (Warden, 2018) datasets. We follow Kidger
et al. (2020) to obtain a balanced SC classification dataset
with precomputed mel-frequency cepstrum coefficients. In

Table 1. Evaluation on stress tasks. 3 states that problem has been
properly solved. i.e., 100% acc. for Copy Memory, and loss ≤ 1e-4
for Adding Problem (predicting always 1 yields a loss of ∼ 0.17).

MODEL SIZE
SEQ. LENGTH

100 200 1000 3000 6000

COPY MEMORY

GRU (Bai et al., 2018a) 16K - - - - -
TCN (Bai et al., 2018a) 16K 3 3 3 - -

CKCNN (2-Blocks) 16K 3 3 3 3 3

ADDING PROBLEM (LOSS)
GRU (Bai et al., 2018a) 70K 3 3 -
TCN (Bai et al., 2018a) 70K 3 3 3 - -

CKCNN (2-Blocks) 70K 3 3 3 3 3

Table 2. Test accuracies on sMNIST, pMNIST and sCIFAR10.
MODEL SIZE SMNIST PMNIST SCIFAR10

TCN (Bai et al., 2018a) 70K 99.0 97.2 -
LSTM (Bai et al., 2018a) 70K 87.2 85.7 -
GRU (Bai et al., 2018a) 70K 96.2 87.3 -
IndRNN (Li et al., 2018) 83K 99.0 96.0 -

DilRNN (Chang et al., 2017) 44K 98.0 96.1 -

HiPPO (Gu et al., 2020) 0.5M - 98.30 -
r-LSTM (Trinh et al., 2018) 0.5M 98.4 95.2 72.2
Self-Att. (Trinh et al., 2018) 0.5M 98.9 97.9 62.2
TrellisNet (Bai et al., 2018b) 8M 99.20 98.13 73.42

CKCNN (2-Blocks) 98K 99.31 98.00 62.25
CKCNN-Big (2-Blocks) 1M 99.32 98.54 63.74

addition, we evaluate the ability of CKCNNs to model long-
term dependencies by training on the raw SC dataset. We
denote this as SC raw (sample length = 16k).

Our results (Tab. 3) show that shallow CKCNNs outperform
recent continuous-time models, e.g., NCDEs, for both the
CT and SC datasets. In addition, CKCNNs obtain promising
results on SC raw, which validates their ability to handle
very-long-term dependencies. In fact, CKCNNs trained on
SC raw outperform several Neural ODE models trained on
the preprocessed data (SC).

Testing at different sampling rates. We now consider the
case where a network is trained with data at a sampling rate
sr1, and tested with data at a different sampling rate sr2
following the sampling procedure of Gu et al. (2020).

Our results (Tab. 5) show that the performance of CKCNNs
remains relatively stable even for large sampling rate fluctu-
ations. This is of large contrast to most previous continuous-
time models, which catastrophically fail upon these changes.
CKCNNs outperform HiPPO (Gu et al., 2020) and set a new
state-of-the-art in this setting. Depending on the sampling
procedure, additional care may be needed to account for
spatial displacements of our kernels (see Appx. D.2).

Irregularly-sampled data. To conclude, we explore the
applicability of CKCNNs for irregularly-sampled data. To
this end, we follow the methodology of Kidger et al. (2020)
and drop 30%, 50% and 70% of the data for the CT dataset,
and include an additional channel in the input to indicate if
values at that position are known. In addition, we provide
results under the same methodology for the SC raw dataset.
We omit the SC dataset as the preprocessed bins are calcu-
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Table 3. Test accuracies on CT, SC and SC raw.
MODEL SIZE CT SC SC RAW

GRU-ODE 89K - 47.9 -
GRU-∆t 89K - 43.3 -
GRU-D 89K - 32.4 -

ODE-RNN 88K - 65.9 -
NCDE 89K - 89.8 -

CKCNN 100K 99.53 95.27 71.66

Table 4. Test accuracies for irregularly sampled datasets.

MODEL
DROP PERCENTAGE

(0%) (30%) (50%) (70%)

CHARACTERTRAJECTORIES

GRU-ODE (De Brouwer et al., 2019) - 92.6 86.7 89.9
GRU-∆t (Kidger et al., 2020) - 93.6 91.3 90.4

GRU-D (Che et al., 2018) - 94.2 90.2 91.9
ODE-RNN (Rubanova et al., 2019) - 95.4 96.0 95.3

NCDE (Kidger et al., 2020) - 98.7 98.8 98.6
CKCNN (2-Blocks) 99.53 98.83 98.6 98.14

SPEECHCOMMADS RAW

CKCNN (2-Blocks) 71.66 63.46 60.55 57.50

lated with overlapping windows and thus information from
dropped points might still be present.

Our results (Tab. 4) show that CKCNNs exhibit stable perfor-
mance for varying quantities of missing data, and perform
better than several models explicitly developed to this end.
Though NCDEs (Kidger et al., 2020) perform slightly better
than our method, our method is much faster (Sec. 6).

6. Discussion
Is depth important? Shallow global memory horizons.
Our results are obtained with CKCNNs built with two resid-
ual blocks only. Additional experiments (Appx. C.2) indi-
cate that our models do not benefit from larger depth, which
suggests that CKCNNs do not rely on very deep features.
Though further analysis is required to draw consistent con-
clusions, it is intriguing to explore if either the current pa-
rameterization of CKCNNs does not allow exploiting depth
properly, or if it is indeed sufficient to equip neural networks
with global memory horizons even if this happens in a shal-
low manner. We consider both outcomes very interesting for
the understanding of CKCNNs and deep learning in general.

Selection of ω0. We note that the performance of CKCNNs
is very susceptible to the selection of ω0. For instance, per-
formance on pMNIST may vary from 98.54 to 65.22 for val-
ues of ω0 in [1,100]. ω0 acts as a prior on the variability of
the target function. However, it is not obvious which value
of ω0 is optimal for the internal (unknown) features of a
network. Learning layer-wise ω0 values yielded suboptimal
results, and better results were obtained by using a prede-
fined ω0 value across all layers. Interestingly, we observe
that kernel approximation (Sec. 4.3) benefits from large
values of ω0 ≥ 1000. However, for all other experiments,
the optimal value of ω0 is always smaller than 70. The
rationale behind these observations is not fully understood
and its analysis is an important topic for future research.

Table 5. Results for different train test sampling rates. Fractions de-
pict proportional frequencies w.r.t. the original one of the dataset.

CKCNN (2-BLOCKS) – SIZE=100K

DATASET TRAIN FREQ. TEST FREQ.

1 1/2 1/4 1/8 1/16

CT
1 99.53 99.30 99.53 95.57 76.92
1/2 98.83 99.07 98.37 95.80 80.42
1/4 96.74 98.83 99.30 94.41 84.84
1/8 48.02 53.61 85.08 99.30 84.61

SC RAW
1 71.66 65.96 52.11 40.33 30.87
1/2 71.24 72.06 69.48 64.61 28.95
1/4 70.33 70.61 69.47 69.37 37.34
1/8 42.84 44.31 56.81 66.44 23.23

MODEL COMPARISON - CHARACTER TRAJECTORIES

MODEL GRU-D ODE-RNN LMU NCDE HIPPO CKCNN

1→ 1/2 23.1 41.8 44.7 6.0 88.8 99.30
1/2→ 1 25.5 31.5 11.3 13.1 90.1 98.83

Speed of computation. CKCNNs can be executed in par-
allel, and thus can be much faster than recurrent networks.
This difference becomes more pronounced in comparison to
neural ODEs, which require at least 5× longer than RNNs
(Kidger et al., 2020). Our approach relies on computing
convolutions with very large convolutional kernels. While
we strongly alleviate its computational complexity via the
convolution theorem, further benefits may result from other
tools such as low-rank approximation.

MLPs parameterizing spatial functions should use sine
nonlinearities. Our findings indicate that Sine is much
better suited to describe continuous functions via MLPs
than all other nonlinearities considered (Sec. 4.3, Appx. C.1).
This motivates replacing common nonlinearities in models
using MLPs to describe continuous spatial functions, such as
convolutional models with continuous kernels, e.g., Schütt
et al. (2017), as well as self-attention models with positional
encodings, e.g., Romero & Cordonnier (2020).

High-frequency components. Interestingly, our kernels
often contain frequency components higher than the reso-
lution of the grid used during training (Fig. 9). As a result,
transitions to finer resolutions benefit from smoothing (see
Appx. D.3). Nevertheless, we believe that, if tuned properly,
these high-frequency components might prove advantageous
for tasks such as super-resolution and compression.

7. Outlook and Future Work
We are intrigued about the potential of CKCNNs for tasks
in which (global) long-term interactions play a crucial role,
e.g., audio, video, reinforcement learning, (autoregressive)
generative modeling, etc. The usage of CKConvs for 2D and
3D data is also interesting. In particular, CKConvs provide
a convenient way to study the effect of long-range interac-
tions as no changes to the network are required for varying
neighborhoods. In addition, we are excited about structural
developments of CKConvs, e.g., attentive CKConvs, as well
as further understanding their underlying dynamics (Sec. 6).
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Supplementary Material
CKConv: Continuous Kernel Convolution For Sequential Data

Figure 6. The sensitivity of networks with layer-wise exponential
growing to slight changes. Taken from Hanin & Rolnick (2019).
The sawtooth function with 2n teeth (left) can be easily expressed
via a ReLU network with 3n + 4 neurons (bottom). However, a
slight perturbation of the network parameters (Gaussian noise of
stddev. 0.1) greatly simplifies the linear regions captured by the
network, and thus the distribution of the knots in the basis (right).

A. Properties of CKConvs
A.1. Irregularly Sampled Data

CKConvs can readily handle irregularly sampled and par-
tially observed data. This is a result of the convolutional
kernel MLPψ being able to be sampled at arbitrary posi-
tions. For very non-uniformed sampled inputs, however,
the corresponding sampling of the convolutional kernel can
provide a biased estimation of the operation. To overcome
this problem, one can follow the strategy proposed by Wu
et al. (2019), which we summarize here for completeness.

For very non-uniformly sampled inputs, the continuous con-
volution (x∗ψ)(t) = ∫R x(τ)ψ(t−τ)dτ , must be reformu-
lated to account for the distribution of samples in the input.
Specifically, it is rewritten as:

(x ∗ ψ)(t) = ∫
R
s(τ)x(τ)ψ(t − τ)dτ, (17)

where s(τ) depicts the inverse sample density of the input
at point τ . Intuitively, s(τ) controls the contribution of
points x(τ) in the output response: if several points are
close to one another, their contribution should be smaller
than the contribution of points in regions where the sample
distribution is much sparser. This provides a Monte Carlo
estimate of (x ∗ ψ) from biased samples. In particular, one
has that:

∫ f(τ)dτ = ∫
f(τ)
p(τ) p(τ)dτ ≈∑

i

f(τi)
p(τi)

, for τi ∼ p(τ).

With s(τ) = 1
p(τ)

, we see that Eq. 17 indeed provides an
unbiased estimation of the convolution operation (x ∗ ψ).

A.2. Data Sampled at Different Sampling Rates

In addition, CKConvs are readily able to handle data sam-
pled at different sampling rates. In particular, the continuous
kernel convolution between an input signal x and a continu-
ous convolutional kernel ψ calculated at sampling rates sr1:
(x∗ψ)sr1 , and sr2: (x∗ψ)sr2 , are approximately equal up
to a normalization factor given by sr2

sr1
:

(x ∗ψ)sr2(t) ≈
sr2
sr1

(x ∗ψ)sr1(t).

Consequently, CKCNNs (i) can be deployed at sampling
rates different than those seen during training, and (ii) can
be trained on data with varying spatial resolutions. The later
is important for tasks in which data can be given at different
resolutions such as super-resolution and segmentation.

Proof. To prove the previous statement, we start with the
continuous definition of the convolution:

(x ∗ ψ)(t) = ∫
R
x(τ)ψ(t − τ)dτ,

where we assume for simplicity and without loss of general-
ity that the functions x, ψ are scalar-valued.

In practice, an integral on a continuous function f ∶ R→ R
cannot be computed on finite time. Consequently, it is often
approximated via a Riemann integral defined on a finite grid
{τsr,i}Nsr

i=1 obtained by sampling τ at a sampling rate sr:

∫ f(τ)dτ ≈
Nsr

∑
i=1

f(τsr,i)∆sr,

where ∆sr = 1
sr

depicts the distance between sampled points.

For two sampling rates sr1, sr2, the convolution can be
approximated through the corresponding Riemann integrals:

∫
R
x(τ)ψ(t − τ)dτ ≈

Nsr1

∑
i=1

x(τsr1,i)ψ(t − τsr1,i)∆sr1

≈
Nsr2

∑
i=1

x(τsr2,i)ψ(t − τsr2,i)∆sr2

Hence, we have that both approximations are approximately
equal to the continuous integral. By equating both approxi-
mations, we obtain that:
Nsr2

∑
i=1

x(τsr2,i)ψ(t − τsr2,i)∆sr2 ≈
Nsr1

∑
i=1

x(τsr1,i)ψ(t − τsr1,i)∆sr1

Nsr2

∑
i=1

x(τsr2,i)ψ(t − τsr2,i)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(x∗ψ)sr2(t)

1
sr2

≈
Nsr1

∑
i=1

x(τsr1,i)ψ(t − τsr1,i)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(x∗ψ)sr1(t)

1
sr1

(x ∗ ψ)sr2(t) ≈ sr2
sr1

(x ∗ ψ)sr1(t)
which concludes the proof.
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B. Dataset Description
Copy Memory Problem. The copy memory task consists
of sequences of length T+20, for which the first 10 values
are chosen randomly among the digits {1, ...,8}, the subse-
quent T−1 digits are set to zero, and the last 11 entries are
filled with the digit 9. The goal is to generate an output of
the same size of the input filled with zeros everywhere ex-
cept for the last 10 values, for which the model is expected
to predict the first 10 elements of the input sequence.

The Adding Problem. The adding problem consists of
input sequences of length T and depth 2. The first dimension
is filled with random values in [0,1], whereas the second
dimension is set to zeros except for two elements marked
by 1. The objective is to sum the random values for which
the second dimension is equal to 1. Simply predicting the
sum to be 1 results in a MSE of about 0.1767.

Sequential and Permuted MNIST. The MNIST dataset
(LeCun et al., 1998) consists of 70K gray-scale 28×28 hand-
written digits divided into training and test sets of 60K and
10K samples, respectively. The sequential MNIST dataset
(sMNIST) presents MNIST images as a sequence of 784
pixels for digit classification. Consequently, good predic-
tions require the model to preserve long-term dependencies
up to 784 steps in the past: much longer dependencies than
most language modelling tasks (Bai et al., 2018b).

The permuted MNIST dataset (pMNIST) additionally per-
mutes the order or the sMNIST sequences at random. Con-
sequently, models can no longer rely on on local features to
perform classification. As a result, the classification prob-
lem becomes more difficult and the importance of long-term
dependencies more pronounced.

Sequential CIFAR10. The CIFAR10 dataset (Krizhevsky
et al., 2009) consists of 60K real-world 32×32 RGB images
uniformly drawn from 10 classes divided into training and
test sets of 50K and 10K samples, respectively. Analogously
to the sMNIST dataset, the sequential CIFAR10 (sCIFAR10)
dataset presents CIFAR10 images as a sequence of 1024
pixels for image classification. This dataset is more difficult
than sMNIST, as (i) even larger memory horizons are re-
quired to successfully solve the task, and (ii) more complex
structures as well as intra-class variations are present in the
images (Trinh et al., 2018).

CharacterTrajectories. The CharacterTrajectories dataset
is part of the UEA time series classification archive (Bagnall
et al., 2018). It consists of 2858 time series of length 182
and 3 channels representing the x, y positions and the pen
tip force while writing a Latin alphabet character in a single
stroke. The goal is to classify which of the different 20
characters was written using the time series data.

Speech Commands. The Speech Commands dataset (War-

den, 2018) consists of 105809 one-second audio recordings
of 35 spoken words sampled at 16kHz. Following Kidger
et al. (2020), we extract 34975 recordings from ten spo-
ken words to construct a balanced classification problem.
We refer to this dataset as SC raw. In addition, we utilize
the preprocessing steps of Kidger et al. (2020) and extract
mel-frequency cepstrum coefficients from the raw data. The
resulting dataset, named SC, consists of time series of length
161 and 20 channels.

C. Ablation Studies
In this section, we perform an ablative study of our approach.
Specifically, we analyze the effect of multiple components
of our network, and provide additional comparisons with
alternative architectures. Specifications on the architectures
and hyperparameters used are given in Appx. D.

C.1. Using Sine Non-Linearities Over Popular
Alternatives

As shown in Sec. 4.3, Sine nonlinearities provide aston-
ishing improvements over equivalent networks with ReLU
nonlinearities for function reconstruction. In this section, we
provide additional experiments to highlight the suitability
of Sine nonlinearities over other popular alternatives both
for function approximation and other complementary tasks.
The same neural architectures are used across all experi-
ments and vary only in the nonlinearity used in the MLPψ’s.
We find that nonlinearities other than Sine benefit from layer
normalization and thus we incorporate it in these variants.

Case I: Function Approximation via MLPψ . First, we eval-
uate the problem of function approximation in Sec. 4.3,
Fig. 5, for nonlinearities other than ReLU and Sine. In
particular, we approximate several functions with a MLPψ

network which varies only in the type of nonlinearity used:
ReLU, Sine (Sitzmann et al., 2020), LeakyReLU (Xu et al.,
2015) and Swish (Ramachandran et al., 2017).

Our results (Fig. 7), illustrate that Sine provides astonish-
ing approximation capabilities over all other nonlinearities
considered. In particular, we observe that Sine is the only
nonlinearity able to reconstruct very nonlinear and very non-
smooth functions, while all other alternatives fail poorly.

Case II: CKCNNs with non-Sine MLPψ . Next, we con-
sider the case in which CKCNNs with non-Sine MLPψ’s are
used to solve the tasks considered in Sec. 5. In particular,
we train CKCNNs on sMNIST, pMNIST, SC and SC raw
for different non-linearities: ReLU, Sine, LeakyReLU and
Swish. We utilize the same backbone architecture used in
the main text for the corresponding dataset.

Our results (Tab. 6) show that Sine non-linearities outper-
form CKCNNs using any of the other non-linearities.
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Figure 7. Function approximation via ReLU, LeakyReLU, Swish and Sine MLPψ networks. All network variants perform a decent job in
approximating simple functions. However, for very non-linear, non-smooth functions, all networks using nonlinearities other than Sine
provide very poor approximations. Interestingly, the uniform knot initialization proposed in Sec. 4.3 provides consistent improvements for
all network variants. However, despite this improvement, the approximation results remain very poor. Contrarily, Sine networks quickly
and seamlessly approximate all functions. All network configurations are equal up to the non-linearities used.
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Table 6. Test accuracies of CKCNNs with multiple MLPψ nonlin-
earities. Model size = 100K.

NON-LINEARITY
DATASET

SMNIST PMNIST SC SC RAW

RELU 81.21 59.15 94.97 49.15
LEAKYRELU 80.57 55.85 95.03 38.67

SWISH 85.20 61.77 93.43 62.23
SINE 99.31 98.00 95.27 71.66

Analysis of the results. Our findings indicate Sine is much
better suited to describe continuous functions via MLPs than
all other popular nonlinearities considered. We consider this
result to be of large interest to the deep learning community.
In particular, it motivates replacing popular nonlinearities
by Sine for applications in which MLPs are used to describe
continuous positional functions. This family encompasses
models with continuous types of convolutions, e.g., Schütt
et al. (2017); Thomas et al. (2018); Finzi et al. (2020);
Fuchs et al. (2020), as well as self-attention models with
positional encodings, e.g., Dai et al. (2019); Ramachandran
et al. (2019); Romero & Cordonnier (2020).

C.2. Going Deeper with CKCNNs

The experimental results shown in Sec. 5 are obtained with
shallow CKCNNs composed of 2 residual blocks only. An
interesting question is whether going deeper can be used to
improve the performance of CKCNNs. To analyze this, we
compare deep and shallow CKCNNs with the same archi-
tecture for equal width, and equal number of parameters.

Our results (Tab. 7) indicate that deep CKCNNs do not pro-
vide improvements over shallow CKCNNs. In fact, deep
CKCNNs of fixed size underperform their shallow counter-
parts. This is an interesting results as shallow CKCNNs do
not strongly rely on deep-wise compositionality of features,
which is largely considered indispensable in deep learning.

Analysis of the results. The dynamics governing these
results are not yet fully understood. However, our findings
may lead to two different conclusions, both of which we
consider interesting for the development and understanding
of CKCNNs and deep learning in general:

Outcome I: Deep CKCNNs. The first possible outcome is
that the current parameterization of our models does not
correctly leverage depth. In this case, efforts to construct
proper deep CKCNNs will likely lead to performance im-
provements over the current architectures, and thus have the
potential to advance the state-of-the-art further.

Outcome II: Depth is not necessary when global memory
horizons are provided with shallow networks. The first
possible outcome is that deep learning in fact does not have
to be deep, but that, on the contrary, it is sufficient to provide
global memory horizons even if this happens in a shallow
manner. This possible outcome is exciting as depth is largely
considered indispensable within the community.

Table 7. Test accuracies of CKCNNs of different depth and width.
PMNIST

DEPTH
FIXED WIDTH FIXED SIZE

SIZE ACC.(%) SIZE ACC.(%)

2 Blocks 98k 99.21 98k 99.21
4 Blocks 225k 99.26 95k 99.19
8 Blocks 480k 99.29 105k 99.12

16 Blocks 990k 99.19 107k 99.02

Figure 8. Graphical description of continuous kernel convolutional
networks. Dot-lined blocks depict optional blocks, and blocks with-
out borders depict variables. KernelNet blocks use Sine non-
linearities. We replace spatial convolutions by FFTConv, which
leverages the convolution theorem to speed up computations.

D. Experimental Details
In this section, we provide extended details over our imple-
mentation as well as the exact architectures and optimization
schemes used in our experiments.

D.1. General Remarks

Our models follow the structure shown in Fig. 8 and vary
only in the number of channels. We use layer normalization
(Ba et al., 2016) in our backbone network, and use the Adam
optimizer (Kingma & Ba, 2014) across all our experiments.
Our code is implemented in PyTorch and is publicly avail-
able at github.com/dwromero/ckconv. We utilize
wandb (Biewald, 2020) to log our results, and use NVIDIA
TITAN RTX GPUs throughout our experiments.

Continuous Convolutional Kernel MLPψ . Our convolu-
tional kernels are parameterized by a conventional 3-layer
MLP with 32 hidden units and Sine nonlinearities:

1→ 32→ 32→ NCin ×NCout,

where NCin, NCout correspond to the input and output chan-
nels of the corresponding convolutional layer. We utilize
weight normalization (Salimans & Kingma, 2016) across all
our MLPψ networks and select a hidden size of 32 based on
empirical evidence as well as findings from previous works,
e.g., Finzi et al. (2020).

https://github.com/dwromero/ckconv
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Normalized relative positions. The MLPs parameterizing
our convolutional kenels receive relative positions as input.
However, considering unitary step-wise relative positions,
i.e., 0, 1, 2, ... , N, can be problematic from a numerical sta-
bility perspective as N may grow very large, e.g., N=16000
for the SC raw dataset. Consequently, we follow good prac-
tices from works modelling continuous functions via MLPs
and utilize normalized relative positions as input. That is,
we map the largest unitary step-wise relative positions seen
during training [0,N] to a uniform linear space in [−1,1].
Hyperparameter tuning. We tune the hyperparameters of
our models via the bayes method given in wandb Sweeps.
We perform tuning on a validation dataset until a predefined
computational budget is exhausted. Further improvements
upon our results may be obtained by leveraging more so-
phisticated tuning methods as well as additional runs.

Selecting ω0. CKCNNs are very susceptible to the value
of ω0. In order to obtain a reasonable ω0, we first perform
a random search on a large interval ω0 ∈ [0,3000]. After a
few runs, we stop the random search and select the subin-
terval in which the validation accuracy is most promising.
Next, we restart the random search on this sub-interval and
repeat the process until a ω0 value is obtained, for which
the validation accuracy is sufficiently high. Surprisingly,
we found optimal values of ω0 to be always enclosed in the
interval [1,70] even for very long sequences as in SC raw.

D.2. Accounting for Spatial Displacements of the
Sampled Convolutional Kernels

We follow the sampling procedure of Gu et al. (2020)
throughout our test sampling rate discrepancy experiments.
Specifically, for a sequence seq of length N , subsampling
by a factor n is performed by running seq[::n]. That is, by
taking the n-th element of the sequence starting from its first
element. For example, for a sequence of length N = 182,
different values of n would yield the following sequences:

(n = 1) → [1, 2, 3, ... , 180, 181, 182]
(n = 2) → [1, 3, 5, ... , 177, 179, 181]
(n = 4) → [1, 5, 9, ... , 173, 177, 181]
(n = 8) → [1, 9, 17, ... , 161, 169, 177]

Recall that MLPψ takes normalized relative positions in
[−1,1] as input, which are computed based on the max
input length seen during training. However, some of these
subsampling transitions change the max value of the se-
quence, e.g., for (n = 8) the maximum is given by 177,
whereas for (n = 1) this value corresponds to 182. Conse-
quently, a naive approach would consider the last position in
each subsampled sequence to correspond to the maximum
normalized relative position 1. This effectively induces
an spatial displacement, and a re-scaling of the sampled
convolutional kernel used during training.

This misalignment is automatically handled under the hood
in our CKConv implementation. Nevertheless, we highlight
this subtle phenomenon to prevent it in future applications.

D.3. Dealing with High-Frequency Components

Interestingly, our experiments revealed that our continuous
kernels often contain frequency components of frequency
higher than the resolution of the sampling grid used during
training (Fig. 9). As these high-frequency components are
not observed during training, we observe that they hurt
performance when evaluated at higher resolutions.

In order to neutralize their influence, we filter these com-
ponents before performing the convolution by means of
blurring. This is performed by applying a convolution upon
the convolutional kernel with a Gaussian filter g of length
2 srtest
srtrain

+ 1 and parameters µ=0, σ=0.5:

[g(− srtest
srtrain

), g(− srtest
srtrain

+ 1), ...,0, ..., g( srtest
srtrain

− 1), g( srtest
srtrain

)]

Note that blurring is only used when the test sampling rate
is higher than the train sampling rate, as opposed to the
normalization factor srtest

srtrain
discussed in Eq. 7, Appx. A.2,

which is applied whenever the sampling rates differ.

D.4. Hyperparameters and Experimental Details

In this section, we provide further specifications of the hyper-
parameter configurations with with our models are trained.
An overview of these hyperparameters is provided in Tab. 8.

Copy Memory. We set the number of channels of our CK-
CNN as to roughly match the number of parameters of
the GRU and TCN networks of Bai et al. (2018a). This is
obtained with 10 hidden channels at every layer. We ob-
serve that the time to convergence grew proportional to the
length of the sequence considered. Whereas for sequences
of length 100 convergence was shown after as few as 10
epochs, for sequences of length 6000 approximately 250
epochs were required. The maximum number of epochs
is set to 50, 50, 100, 200 and 300 for sequences of size
100, 200, 1000, 3000 and 6000. We observe that different
values of ω0 are optimal for different sequence lengths. The
optimal ω0 values found are 19.20, 34.71, 68.69, 43.65 and
69.97 for the corresponding sequence lengths.

Adding Problem. We set the number of channels of our
CKCNN as to roughly match the number of parameters of
the GRU and TCN networks of Bai et al. (2018a). This is
obtained with 25 hidden channels at every layer. Similarly
to the Copy Memory task, we observe that the time to con-
vergence grew proportional to the length of the sequence
considered. Interestingly, this task was much easier to solve
for our models, with convergence for sequences of length
6000 observed after 38 epochs. The maximum number of
epochs is set to 20, 20, 30, 50 and 50 for sequences of size
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Table 8. Hyperparameter specifications of the best performing CKCNN models.

PARAMS. COPY MEMORY ADDING PROBLEM
SMNIST PMNIST SCIFAR10

CT† SC SC RAW†
Small / Big Small / Big Small / Big

Epochs See Appx. D.4 See Appx. D.4 200 200 200 200 200 300
Batch Size 32 32 64 64 64 32 64 32
Optimizer Adam Adam Adam Adam Adam Adam Adam Adam
Learning Rate 5e-4 0.001 0.001 0.001 0.001 0.001 0.001 0.001
# Blocks 2 2 2 2 2 2 2 2
Hidden Size 10 25 30 / 100 30 / 100 30 / 100 30 30 30
ω0 See Appx. D.4 See Appx. D.4 31.09 / 30.5 43.46 / 42.16 25.67 21.45 30.90 39.45
Dropout - - 0.1 / 0.2 - 0.2 / 0.3 0.1 0.2 -
Input Dropout - - 0.1 / 0.2 0.1 / 0.2 0.0 / 0.0 - - -
Weight Dropout - - - - - / 0.1 - - -
Weight Decay - - - - - / 1e-4 - - 1e-4
Scheduler - - Plateau Plateau Plateau Plateau Plateau Plateau
Patience - - 20 20 20 20 15 20
Scheduler Decay - - 5 5 5 5 5 5

Model Size 15.52K 70.59K 98.29K / 1.03M 98.29K / 1.03M 100.04K / 1.04M 100.67K 118.24K 98.29K
† Hyperparameter values for the classification and varying sampling rate tasks. For hyperparameters w.r.t. irregularly-sampled data please see Tab. 9.

Table 9. Hyperparameter values for experiments on irregularly
sampled data. Non-listed parameters correspond to those in Tab. 8.

PARAMS. CT SC RAW
(30%) (50%) (70%) (30%) (50%) (70%)

ω0 11.46 23.10 23.10 35.66 31.70 25.29
Dropout 0.2 0.2 0.0 0.1 0 0
Weight Decay 0.0 0.001 0.001 1e-4 1e-4 1e-4

100, 200, 1000, 3000 and 6000. We observe that different
values of ω0 are optimal for different sequence lengths. The
optimal ω0 values found are 14.55, 18.19, 2.03, 2.23 and
4.3 for the corresponding sequence lengths.

sMNIST, pMNIST and sCIFAR10. We construct two
models of different sizes for these datasets: CKCNN and
CKCNN-Big. The first is constructed to obtain a parameter
count close to 100K. The second model, is constructed to
obtain a parameter count close to 1M. The parameters uti-
lized for these datasets are summarized in Tab. 8. Despite
our efforts, we observed that our models heavily overfitted
sCIFAR10. Combinations of weight decay, dropout and
weight dropout were not enough to counteract overfitting.

CT, SC and SC raw. The parameters utilized for classifica-
tion on these datasets are summarized in Tab. 8. For hyper-
parameters regarding experiments with irregularly-sampled
data please refer to Tab. 9. Any non-specified parameter
value in Tab. 9 can be safely consider to be the one listed
for corresponding dataset in Tab. 8.

Figure 9. High-frequency components in Sine CKConvs. We ob-
serve that continuous kernels parameterized by Sine networks
often contain frequency components of frequency higher than the
resolution of the grid used during training. Here, for instance,
the kernel looks smooth on the training grid. However, several
high-frequency components appear when sampled on a finer grid.
Though this may be a problematic phenomenon, we believe that,
if tuned properly, these high-frequency components can prove ad-
vantageous to model fine details in tasks such as super-resolution
and compression cheaply.


