150 research outputs found

    My Brief Stint As A Domestic Violence Victim

    Get PDF
    Pages 63-7

    The assertive pastor : a pilot study comparing Wesleyan and non-Wesleyan pastors in assertive/non-assertive behavior

    Get PDF
    https://place.asburyseminary.edu/ecommonsatsdissertations/1770/thumbnail.jp

    AURORA KINASES IN SOLELY ESTROGEN-INDUCED ONCOGENESIS: RELATION TO CENTROSOME AMPLIFICATION AND CHROMOSOMAL INSTABILITY

    Get PDF
    Estrogens play a crucial role in the causation and development of sporadic breast cancer, which accounts for ~ 90 - 95% of all breast cancer cases. To understand the molecular and cellular events involved in solely estrogen-induced oncogenesis, we studied the role of mitotic kinases, Aurora A and B, and the MDM2-p53wt pathway in estrogen-elicited oncogenesis, using two animal tumor models, the estrogen-induced tumors of the kidney in male Syrian hamsters, and the mammary gland in female ACI rats. Evidence is presented indicating that both Aurora kinase and MDM2 over-expression are under estrogen control in both tumor models studied. Our data further show that estrogens, interacting with the estrogen receptor α, elicit persistent Aurora A kinase over expression that may affect abnormal centrosome duplication, and together with the loss of p53wt activity by the over expression of MDM2 lead to estrogen-induced oncogenesis

    PhasePack: A Phase Retrieval Library

    Full text link
    Phase retrieval deals with the estimation of complex-valued signals solely from the magnitudes of linear measurements. While there has been a recent explosion in the development of phase retrieval algorithms, the lack of a common interface has made it difficult to compare new methods against the state-of-the-art. The purpose of PhasePack is to create a common software interface for a wide range of phase retrieval algorithms and to provide a common testbed using both synthetic data and empirical imaging datasets. PhasePack is able to benchmark a large number of recent phase retrieval methods against one another to generate comparisons using a range of different performance metrics. The software package handles single method testing as well as multiple method comparisons. The algorithm implementations in PhasePack differ slightly from their original descriptions in the literature in order to achieve faster speed and improved robustness. In particular, PhasePack uses adaptive stepsizes, line-search methods, and fast eigensolvers to speed up and automate convergence

    Perforin gene transfer into hematopoietic stem cells improves immune dysregulation in murine models of perforin deficiency

    Get PDF
    Defects in perforin lead to the failure of T and NK cell cytotoxicity, hypercytokinemia, and the immune dysregulatory condition known as familial hemophagocytic lymphohistiocytosis (FHL). The only curative treatment is allogeneic hematopoietic stem cell transplantation which carries substantial risks. We used lentiviral vectors (LV) expressing the human perforin gene, under the transcriptional control of the ubiquitous phosphoglycerate kinase promoter or a lineage-specific perforin promoter, to correct the defect in different murine models. Following LV-mediated gene transfer into progenitor cells from perforin-deficient mice, we observed perforin expression in mature T and NK cells, and there was no evidence of progenitor cell toxicity when transplanted into irradiated recipients. The resulting perforin-reconstituted NK cells showed partial recovery of cytotoxicity, and we observed full recovery of cytotoxicity in polyclonal CD8 + T cells. Furthermore, reconstituted T cells with defined antigen specificity displayed normal cytotoxic function against peptide-loaded targets. Reconstituted CD8 + lymphoblasts had reduced interferon-γ secretion following stimulation in vitro, suggesting restoration of normal immune regulation. Finally, upon viral challenge, mice with >30% engraftment of gene-modified cells exhibited reduction of cytokine hypersecretion and cytopenias. This study demonstrates the potential of hematopoietic stem cell gene therapy as a curative treatment for perforin-deficient FHL

    Isolated/non-isolated quad-inverter configuration for multilevel symmetrical/asymmetrical dual six-phase star-winding converter

    Get PDF
    This article presents the developments of a novel isolated/non-isolated quad inverter configuration for multilevel dual six-phase (twelve-phase) star-winding converter. The modular circuit consists of four standard voltage source inverters (VSIs). Each VSI is incorporated with one bi-directional switch (MOSFET/IGBT) per phase and links with the neutral line through two capacitors which allows symmetrical and asymmetrical operations. A modified single carrier five-level modulation (MSCFM) algorithm is developed and modulates each 2-level VSI as a 5-level output multilevel inverter. The entire AC converter is numerically modeled using Matlab/PLECS simulation software and the predicted behavior of the system is analyzed and presented. Good agreement is obtained between these results and the theoretical analysis. Suitable applications for the converter include (low-voltage/high-current) medium power systems, electrical vehicles, AC tractions, and ‘More-Electric Aircraft’ propulsion systems

    Singlet fission efficiency in tetracene-based organic solar cells

    Get PDF
    Singlet exciton fission splits one singlet exciton into two triplet excitons. Using a joint analysis of photocurrent and fluorescence modulation under a magnetic field, we determine that the triplet yield within optimized tetracene organic photovoltaic devices is 153% ± 5% for a tetracene film thickness of 20 nm. The corresponding internal quantum efficiency is 127% ± 18%. These results are used to prove the effectiveness of a simplified triplet yield measurement that relies only on the magnetic field modulation of fluorescence. Despite its relatively slow rate of singlet fission, the measured triplet yields confirm that tetracene is presently the best candidate for use with silicon solar cells.United States. Dept. of Energy. Office of Basic Energy Sciences (Award DE-SC0001088)National Science Foundation (U.S.). Graduate Research Fellowship (Grant 1122374

    Error analysis of free probability approximations to the density of states of disordered systems

    Full text link
    Theoretical studies of localization, anomalous diffusion and ergodicity breaking require solving the electronic structure of disordered systems. We use free probability to approximate the ensemble- averaged density of states without exact diagonalization. We present an error analysis that quantifies the accuracy using a generalized moment expansion, allowing us to distinguish between different approximations. We identify an approximation that is accurate to the eighth moment across all noise strengths, and contrast this with the perturbation theory and isotropic entanglement theory.Comment: 5 pages, 3 figures, submitted to Phys. Rev. Let

    Comparison of the Transcriptomes and Proteomes of Serum Exosomes from Marek's Disease Virus-Vaccinated and Protected and Lymphoma-Bearing Chickens

    Get PDF
    Marek's disease virus (MDV) is the causative agent of Marek's disease (MD), a complex pathology of chickens characterized by paralysis, immunosuppression, and T-cell lymphomagenesis. MD is controlled in poultry production via vaccines administered in ovo or at hatch, and these confer protection against lymphoma formation, but not superinfection by MDV field strains. Despite vaccine-induced humoral and cell-mediated immune responses, mechanisms eliciting systemic protection remain unclear. Here we report the contents of serum exosomes to assess their possible roles as indicators of systemic immunity, and alternatively, tumor formation. We examined the RNA and protein content of serum exosomes from CVI988 (Rispens)-vaccinated and protected chickens (VEX), and unvaccinated tumor-bearing chickens (TEX), via deep-sequencing and mass spectrometry, respectively. Bioinformatic analyses of microRNAs (miRNAs) and predicted miRNA targets indicated a greater abundance of tumor suppressor miRNAs in VEX compared to TEX. Conversely, oncomiRs originating from cellular (miRs 106a-363) and MDV miRNA clusters were more abundant in TEX compared to VEX. Most notably, mRNAs mapping to the entire MDV genome were identified in VEX, while mRNAs mapping to the repeats flanking the unique long (IRL/TRL) were identified in TEX. These data suggest that long-term systemic vaccine-induced immune responses may be mediated at the level of VEX which transfer viral mRNAs to antigen presenting cells systemically. Proteomic analyses of these exosomes suggested potential biomarkers for VEX and TEX. These data provide important putative insight into MDV-mediated immune suppression and vaccine responses, as well as potential serum biomarkers for MD protection and susceptibility.College of Agriculture and Natural Resources (CANR) of the University of Delaware; Avian Biosciences Center of the University of DelawareOpen access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    • …
    corecore