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Abstract 

Persistent Aurora (Aur) A and B over-expression, centrosome 

amplification (CA), chromosomal instability (CIN) and aneuploidy invariably 

occur together in a vast majority of human neoplasms. These molecular 

changes are frequently found (>80%) in human sporadic ductal carcinoma in-

situ (DCIS) and in primary invasive ductal breast cancers (IDBC). In solely 

17β-estradiol (E2)-induced mammary tumors in ACI rats, Li et al. have 

previously shown AurA protein over-expression, CA, CIN and aneuploidy (Li 

et al., 2004). AurA and B, mitotic kinases involved in controlling proper cell 

division, are modulated by cell cycle progression. Their over-expression is 

implicated in the deregulation of chromosomal duplication/segregation, and 

cytokinesis leading to CA, CIN and aneuploidy. To determine whether the 

over-expression of Aur kinases is a common feature of E2-induced 

oncogenesis, AurA and B expression were examined in the Syrian hamster 

tumors of the kidney. Western blot analysis of the E2-induced Syrian hamster 

tumors of the kidney revealed that both AurA and B protein expression was 

markedly increased when compared to cholesterol-treated controls. 

Moreover, immunohistochemistry revealed that this increase in AurA and B 

expression was specifically localized to E2-induced tumor cells. Using an in 

vitro kinase assay, a significant increase in AurA kinase activity was detected 

in these tumors of the kidney and a significant increase in AurA mRNA levels 



xix  

was detected as measured by real-time PCR. The over-expression of both 

kinases was markedly reduced in E2-induced tumor-bearing hamsters 

subjected to either a 10-day E2-withdrawal period or treated for a similar 

period with Tamoxifen citrate (Tx) plus E2, when compared to tumors of the 

kidney from hamsters treated with E2 alone. These results indicate that both 

AurA and B are under estrogen control mediated by estrogen receptor α 

(ERα). Additionally, examination of centrin and γ-tubulin expression in Syrian 

hamster tumors of the kidney indicates an increase in centrosome number 

and size, a characteristic of CA. The AurA expression was co-localized to 

isolated amplified tumor centrosomes, identified by their high levels of centrin 

and γ-tubulin expression. CIN and aneuploidy in Syrian hamster tumors of the 

kidney has previously been demonstrated (Papa et al., 2003). In order to 

assess, during E2-induced oncogenesis, whether the over-expression of AurA 

and B contributes to the deregulation of the centrosome cycle via their 

specific protein substrates, we analyzed the protein expression of centrin, 

histone H3, PP1 and TPX2, all of which were significantly over-expressed in 

Syrian hamster tumors of the kidney and in ACI rat mammary gland tumors. 

Additionally, the expression of MDM2, which regulates the tumor suppressor 

gene p53, and p53 protein, an AurA substrate, were examined in Syrian 

hamster tumors of the kidney and in ACI rat mammary gland tumors. MDM2 

expression was significantly increased in both Syrian hamster tumors of the 

kidney and in ACI rat mammary gland tumors at the protein and mRNA level, 



xx  

and estrogen modulation studies showed that MDM2 protein expression is 

either directly or indirectly controlled by E2. Binding studies show that MDM2 

is bound to p53wt. MDM2-p53wt binding was inhibited in Syrian hamster 

tumors of the kidney after treatment with the small molecule inhibitor RITA 

(Reactivation of p53 and Induction of Tumor cell Apoptosis). In E2-induced 

Syrian hamster tumors of the kidney, Western blot analysis revealed that 

RITA treatment led to a significant increase in p53wt protein expression when 

compared to untreated tumor samples. In addition, RITA treatment led to the 

increased expression of Bax, a downstream target gene of p53, which 

promotes apoptosis. These data suggest that Aur kinase over-expression, 

induced by estrogens, may interfere with bipolar spindle formation and 

chromosome segregation, leading to CA, CIN and aneuploidy, thus 

supporting the concept that AurA over-expression and CA are causative 

events, induced by estrogen, that lead to tumor development. The over-

expression of MDM2, in tandem with AurA, indicates a close relationship 

between these two entities in fostering CA, CIN, aneuploidy and tumor 

development, defining events of E2-driven oncogenesis. 
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Chapter 1: Introduction and Background 



2  

1.1 The Relationship Between Breast Cancer and Estrogen 

Breast cancer (BC) is the most commonly diagnosed female cancer 

worldwide with an estimated one million new cases diagnosed each year 

(Bray et al., 2004). Moreover, BC is the second leading cause of cancer 

related deaths in industrialized countries (Nkondjock and Ghadirian, 2005). 

Approximately 181,000 cases of BC are diagnosed in the United States each 

year with an estimated 41,000 dying from BC each year  (2007). It has been 

well established that cancer has a genetic basis; however, only 5 – 10% of 

BC are familial (King et al., 1993). These familial cases largely result from 

inherited mutations in BC susceptibility genes such as BRCA1 and 2 (2005). 

In the case of sporadic BC, which accounts for about 90 – 95% of all BC 

cases, it has been well established that both endogenous, and to a lesser 

extent, exogenous estrogens play a crucial role in both the causation and 

development (Bilimoria and Morrow, 1995).  

In addition to being female and post-menopausal (50+ years), the 

major risk factors of sporadic BC are associated with ovarian hormone 

exposure (Table 1), more specifically, the accumulation of a woman’s lifetime 

exposure to estrogen (Bernstein, 2002). These well-established risk factors 

include:  early age of menarche (<12 years), late onset of menopause (>55 

years), nulliparity, late age of first full-term birth (>30 years) and fewer number 

of full-term births (Martin and Weber, 2000; 2005). All of these risk factors act 
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to directly increase a woman’s exposure to circulating levels of estrogen 

through an increased number of uninterrupted ovulatory cycles.   

Table 1. Breast Cancer risk factors 

Early age of menarche Post-menopausal obesity 

Late onset of menopause Alcohol consumption 

Nulliparity Physical inactivity 

Late age of first full-term birth COC / HRT 

Fewer number of full-term births Ovarian tumors 

 

Other risk factors associated with BC may be attributed to individual 

diet and lifestyle choices which have been shown to indirectly increase 

endogenous levels of circulating estrogens. Obesity increases a woman’s risk 

of post-menopausal BC (McPherson et al., 2000; Eliassen et al., 2006); 

however it does not increase the risk of pre-menopausal BC (Huang et al., 

1997). In post-menopausal women, adipose tissue is the major source of 

circulating estrogen. Thus, obesity increases the level of estrogen and the 

likelihood of developing BC. Physical activity has been implicated as an 

important variable risk factor for BC (Colditz et al., 2003). An inverse 

association between physical activity and BC has been reported (Bernstein et 

al., 2005). In addition, moderate alcohol consumption (1-2 drinks per day) has 

been associated with a 30-50% increase in BC  (Martin and Weber, 2000; 

Terry et al., 2006). It has been suggested that alcohol consumption within the 
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last five years is associated with an 82% increased risk in young women (age 

20-49) relative to never drinkers (Berstad et al., 2007).  

Other proposed BC risk factors are related to the exogenous 

administration of estrogens such as in combination oral contraceptives (COC) 

and hormone replacement therapy (HRT). While one may expect that the 

ingestion of these exogenous estrogens would increase a woman’s risk of 

BC, a majority of studies report only a modest increase in BC risk in a subset 

of COC users under the age of 45 (Malone et al., 1993). A slight increase in 

the risk of developing BC has been reported in women taking COCs and 10 

years after cessation (McPherson et al., 2000). However, recent reports 

suggest that, at most, COC use is a minor BC risk contributor (Nichols et al., 

2007).  

Estrogen replacement therapy (ERT) or combined HRT provide relief 

of menopausal symptoms and prevent osteoporosis in post-menopausal 

women, thus leading to their increased use in recent decades (Keating et al., 

1999). Over the last 10 years, both therapies have come under fire for their 

suspected role in increasing BC risk. Several reports have shown data in 

favor of (Colditz et al., 1995; Schairer et al., 2000; Beral, 2003) and against 

(Dupont and Page, 1991) an increased BC risk after these post-menopausal 

hormone therapies. The most comprehensive of these studies, the Women’s 

Health Initiative, a randomized, double-blind, placebo controlled disease 

prevention trial, reported no increase in BC risk in women taking ERT alone 
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(Anderson et al., 2004). However, women receiving combined HRT were 26% 

more likely to develop BC (Rossouw et al., 2002) and to be diagnosed at an 

advanced stage most likely due to an increase in breast density which 

delayed diagnosis (Chlebowski et al., 2003). 

Additional strength for the link between BC and estrogen has been 

observed in some of the drugs used in its therapy. The two types of hormonal 

therapies used in the treatment of BC include selective estrogen receptor 

modulators (SERMs) and aromatase inhibitors. SERMs are used for 

treatment and prevention of BC in both pre- and post-menopausal women, 

whereas aromatase inhibitors are used for prevention only in post-

menopausal women. SERMs, like tamoxifen, work by selectively inhibiting 

estrogen receptor α (ERα). The binding of tamoxifen to the ERα results in a 

conformational change which favors recruitment of co-repressors that inhibit 

transcription (Come et al., 2005). In at-risk populations, tamoxifen is effective 

in preventing cancer cell proliferation and reducing BC incidence by 48% 

(Johnston, 2005). Aromatase inhibitors have been shown to be effective in 

reducing serum estrogen levels by inhibiting the conversion of androgens to 

estrogens in peripheral tissues (Fentiman, 2004). While tamoxifen has been 

the standard of care for several decades, recent studies have shown that 

treatment with aromatase inhibitors may be more efficacious as a first–line 

treatment of advanced BC (Baum et al., 2002).  
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1.2 The Syrian Hamster Model in the Study of Human Breast 

Cancer 

Estrogen-induced tumors of the Syrian hamster kidney were first 

described in 1959 by Kirkman (Kirkman, 1959). He showed that these tumors 

were not only estrogen-induced but also estrogen-dependent. When the 

estrogen source was removed, the tumors stopped growing and underwent a 

marked regression (Kirkman, 1959). The Syrian hamster kidney is an 

intensively studied model in estrogen oncogenesis because 100% tumor 

incidence is achieved using the natural hormone 17β-estradiol (E2) in the 

absence of co-administration of any other carcinogen (Liehr, 1997). 

Moreover, no spontaneous tumors have been detected at this organ site 

(Kirkman, 1959; Pour et al., 1976). 

In development, the hamster reproductive tract and urinary tract 

systems arise from the same germinal ridge of multipotential cells (Kirkman, 

1959; Li et al., 2001) (Figure 1). Some of the reproductive germinal cells that 

are normally destined to reside in the uterus ectopically migrate to the urinary 

tract where they establish themselves in the corticomedullary region of the 

kidney. These misplaced interstitial cells, committed to an epithelial 

differentiation pathway, are referred to as ectopic uterine stem cells (Li et al., 

2001). These cells remain dormant unless exposed to a sustained level of 

estrogen. 
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Figure 1. Schematic representation of the Syrian hamster germinal 

ridge (Adapted from (Li et al., 2001) 

 

Bilateral tumors can be induced with E2 and the synthetic estrogen 

diethylstilbestrol (DES) in both intact and castrated male hamsters. Similar 

tumors can also be induced in ovariectomized female hamsters, but because 

frequent estrogen exposure induces aplastic anemia in female hamsters 

resulting in a high mortality, they are not commonly used. Moreover, intact 

females do not develop kidney tumors when exposed to E2/DES alone 

because of the inhibitory effects of ovarian progesterone (Kirkman, 1959). 

This response is in contrast to the role of this hormone in the mammary gland 
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where both estrogen and progesterone are mitogenic. Progestins, anti-

estrogens, like tamoxifen, and androgens, when concomitantly administered 

with E2 or DES completely block the formation of these tumors in the hamster 

kidney (Li and Li, 1978).  

An advantage of this well-established animal model is that E2-induced 

tumors occur in the absence of any intervening morphological stages, and the 

tumors develop via the continuous progression of a subset of interstitial stem 

cells (Li et al., 2003b). This is a marked contrast to human BC and other 

female rat E2-induced mammary tumors from a variety of strains which 

progress through stages of hyperplasia, atypical ductal hyperplasia (ADH), 

dysplasia and ductal carcinoma in-situ (DCIS) in response to continuous 

estrogen exposure. However, the E2-induced Syrian hamster kidney model 

and human BC share many crucial early molecular changes (Li and Li, 2003). 

These events include: over-expression and amplification of early response 

nuclear proto-oncogenes c-myc, c-fos and c-jun (Hou et al., 1996; Li et al., 

1999), deregulation of cell-cycle entities including cyclins D and E, cyclin 

dependent kinase (cdk) 2 and 4, pRb and the cyclin dependent kinase 

inhibitor p27 (Liao et al., 2000), AurA/B over-expression (Hontz et al., 2007), 

CA, CIN and aneuploidy (Li et al., 2001).  

 



9  

1.3 The ACI Rat Model in the Study of Human Breast Cancer  

Rodent models have been used in the study of human BC since the 

1930s (Lacassagne, 1932; Lacassagne, 1933). Many studies have identified 

mouse and rat strains highly susceptible to estrogen-induced mammary 

carcinogenesis (Dunning et al., 1953; Nagasawa, 1979). However, these 

solely estrogen-induced mammary tumor models are limited by variability in 

tumor incidence depending on the strain, administration method, dose and 

tolerance (Dunning et al., 1953). Several of the rat tumor models become 

estrogen-dependent upon treatment with synthetic chemical carcinogens, 

including 7,12-dimethylbenz-(a)anthracene (DMBA) (Huggins et al., 1961) 

and methylnitrosourea (MNU) (Bots and Willighagen, 1975), or radiation to 

induce tumor development. While these chemically-induced rat mammary 

tumors are morphologically similar to human BCs (Russo and Russo, 2000; 

Singh et al., 2000), the cellular sequence is not the same, no ADH or DCIS, 

and they do not share the same molecular characteristics. For example, 

chemically-induced rat mammary tumors are highly diploid (>85%) (Aldaz et 

al., 1992; Haag et al., 1996), whereas human BCs are highly aneuploid, 

89.6% (Arnerlov et al., 2001). The validity of these chemically-induced tumor 

models has also been questioned because their induction requires synthetic 

chemicals to which women are never exposed to in the environment. 

The August Copenhagen Irish (ACI) rat, a cross between the August 

and the Copenhagen-Irish strains has emerged as a uniquely sensitive, solely 
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estrogen-induced mammary oncogenesis model (Dunning et al., 1953). 

Recently, the sensitivity of the ACI strain to estrogen-induced BC has been 

mapped to chromosomes 5 and 18 (Gould et al., 2004). These chromosomes 

are the location of estrogen-induced mammary cancer (Emca) 1 and 2 genes 

which act independently to increase tumor incidence and decrease latency. 

ACI rat mammary tumors are both estrogen-induced and -dependent as 

demonstrated by tumor regression when exogenous estrogen sources are 

removed or anti-estrogens are co-administered (Li et al., 2002b). Advantages 

of this model over other mouse and rat models include: 1. Estrogen treatment 

of intact female ACI rats causes mammary tumors in 100% of the animals 

within 6 months (Li et al., 2002b); 2. There is a very low incidence of 

spontaneous mammary gland tumor development – about 11% (Maekawa 

and Odashima, 1975); 3. A rat mammary tumor virus has not been identified 

as is the case in mice with the mouse mammary tumor virus (MMTV); 4. 

Estrogen concentrations used to induce tumor formation approach the 

physiological range of normal cycling rats (70-80 pg/mL) (Li et al., 2004); 5. 

Concomitant treatment with SERMs, like tamoxifen, completely inhibits E2-

induced mammary tumor induction (Li and Li, 2003); 6. Histopathologic and 

morphological changes including: hyperplasia, dysplasia, DCIS and invasive 

ductal breast cancer (IDBC) are similar to those reported in human BC; and 7. 

Cellular and molecular features observed in E2-induced ACI rat mammary 

tumors are similar to those observed in human ductal BC. For example, both 
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ACI rat mammary tumors and human BCs frequently show over-expression 

and amplification of early response nuclear proto-oncogenes c-myc (Li et al., 

2002a), c-fos and c-jun, deregulation of cell-cycle entities including cyclins D1 

and E1 (Weroha et al., 2006), cdk2 and 4, pRb and the cyclin dependent 

kinase inhibitor p27, AurA/B over-expression, CA, CIN and aneuploidy (Li et 

al., 2004).  

 

1.4 Estrogen Action and Estrogen Receptors 

Natural estrogens are steroid hormones synthesized from cholesterol, 

in the ovaries and adrenal gland. The synthesis and secretion of estrogens 

are controlled by follicle stimulating hormone produced by the pituitary gland. 

Estrogen is used to collectively describe the female hormones which include 

E2, estrone and estriol. Of these, E2 is the most abundant and potent. 

Estrogens influence growth, differentiation and functioning of target tissues 

including mammary gland, uterus and ovaries (Kuiper et al., 1997). Estrogens 

have also been shown to play a role outside the reproductive system. They 

play an important role in bone maintenance (Srivastava et al., 2001), brain 

function (McEwen, 1999) and the cardiovascular system where, depending on 

the E2 levels, they may exert cardioprotective effects (Mendelsohn and Karas, 

1999).  

Estrogen displays its effects through at least four estrogen receptor 

(ER) pathways: classical ligand-dependent, ligand-independent, estrogen 
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response element (ERE)-independent and cell-surface (non-genomic) 

signaling (Hall et al., 2001). The classical mechanism of estrogen action, via 

ERs, is how most of its biological effects occur. Estrogens circulate in the 

body either un-bound or bound to albumin or sex hormone binding globulin 

(Kahn et al., 2002). Un-bound estrogen can freely diffuse in and out of cells; 

however, in target cells, estrogen is retained with high affinity and specificity 

by binding to ERs (Kuiper et al., 1997). This binding allows the ERs to 

dissociate from a heat shock protein and undergo a conformational change 

allowing dimerization to occur. The ER dimers can then bind to specific 

sequences of DNA referred to as EREs that act as transcription factors used 

to modulate transcription of target genes (Figure 2). The interaction with 

EREs can be direct or indirect via the action of co-activators which enhance 

transcription (McKenna et al., 1998) or co-repressors which down-regulate 

transcription (Dobrzycka et al., 2003).  

ERs belong to the steroid/thyroid hormone superfamily of nuclear 

receptors. Two ERs have been identified, ERα  by Jensen in 1958 (Jensen 

and DeSombre, 1973) and ERβ by Kuiper in 1996 (Kuiper et al., 1996). ERα 

and ERβ are separate gene products; ERα is localized to human 

chromosome 6q25.1 (Menasce et al., 1993) and ERβ to chromosome 14q22-

24 (Enmark et al., 1997). The ERs can be subdivided into several functional 

domains, the highly conserved, 97 and 60% DNA- and ligand binding 
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domains, respectively, and the highly variable N-terminal domain (Hall et al., 

2001).  

Both ERs are widely distributed throughout the body. ERα is 

expressed primarily in the pituitary, uterus, liver, heart and kidneys, whereas 

ERβ is expressed primarily in the lungs, ovary, prostate, gastrointestinal tract, 

bladder as well as hematopoietic and central nervous systems (Couse et al., 

1997; Kuiper et al., 1997). ERα and ERβ are co-expressed in the mammary 

gland, epididymis, thyroid, adrenal, bone and certain regions of the brain 

(McEwen and Alves, 1999; Pettersson and Gustafsson, 2001). In many 

instances, when co-expressed, ERβ opposes the actions of ERα. The 

function of ERα is primarily related to cellular growth responses in target 

tissues, whereas the function of ERβ is primarily anti-proliferative and pro-

differentiative (Imamov et al., 2005). 

The existence of two ER subtypes allows estrogen to signal via three 

potential nuclear pathways: ERα homodimers, ERα/ERβ heterodimers and 

ERβ homodimers (Kuiper and Gustafsson, 1997). The transactivating 

functions of ERα and ERβ are mediated by transcription activation functions 

(AF-1 and AF-2) that allow the ERs to stimulate the transcription of estrogen-

regulated genes. In addition to their role in transcription mediation, AFs 

mediate cell- and promoter-specificity (Matthews and Gustafsson, 2003). 

While both ERs are highly reactive to activation through the ligand-dependent 

AF-2, only ERα is highly reactive to ligand-independent activation through AF-
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1. It has been suggested that this weaker activation of ERβ through AF-1 

might be the origin of its repressive activity (Ogawa et al., 1998).  

In addition to the nuclear ER, a G protein-coupled ER, GPR30, has 

been described (Carmeci et al., 1997). In response to estrogen, GPR30 can 

mediate rapid signaling events and modulate transcriptional activity. In a 

recent clinical study of human breast samples 42% and 62% of DCIS and 

IDBC were GRP30 positive, respectively (Filardo et al., 2006). While it is as 

yet unknown how ER and GPR30 interact and the role that this interaction 

may play in oncogenesis, GPR30 may represent an important mechanism to 

overcome ER loss in BC (Prossnitz et al., 2008). 
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Figure 2. Schematic representation of ER/estrogen mediated gene 

transcription. Estrogen (E2), estrogen receptor (ER), heat shock protein 

(HSP) (Adapted from (Michalides, Griekspoor et al. 2004) 
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1.5 Overview of Aurora Kinases  

Aurora kinases are mitotic serine/threonine kinases that phosphorylate 

a myriad of mitotic/centrosomal protein substrates required for proper 

chromosome duplication, segregation and cytokinesis. These mitotic events 

are important in maintaining genomic integrity. The serine/threonine family of 

mitotic kinases also includes cdk1, the polo-like kinases with four family 

members, the NEK kinases with 11 family members and the WARTS/LATS 1 

related kinases (Marumoto et al., 2005). 

Aurora kinases were first discovered in Drosophila (Glover et al., 

1995); however, human tissue samples have been reported to express three 

Aurora kinases  (Keen and Taylor, 2004) (Figure 3). Because numerous 

research groups discovered the various Aurora proteins independently, they 

are known by a plethora of names; however, nomenclature has agreed on 

Aurora A (AurA), B (AurB) and C (AurC) (Adams et al., 2001; Nigg, 2001). 

The catalytic domains of the Aurora kinases (Figure 3, shown in green) are 

highly conserved, but there is little homology between the NH2-terminal 

extensions. Auto-phosphorylation of a threonine residue in the T-loop, (Figure 

3, shown in yellow) is required for the activation of the protein’s kinase 

activity. The destruction box (D-box), (Figure 3, shown in blue) is a short 

amino acid motif that is recognized by adaptors of the anaphase promoting 

complex (APC). These adaptors target the protein for degradation via the 

ubiquitin pathway. AurA degradation is dependent upon an intact A- and D-
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box (Littlepage and Ruderman, 2002; Keen and Taylor, 2004). AurB is 

degraded by the proteasome via the Cdc27 subunit of the APC. Degradation 

of AurB does not depend on its D-box, but it does require intact KEN- and A-

boxes (Nguyen et al., 2005). While AurA and B are expressed in most cell 

types, AurC is specifically expressed in the testis where it plays a role in 

spermatogenesis (Carmena and Earnshaw, 2003; Marumoto et al., 2005).  

Figure 3. Schematic representation of the three human Aurora 

kinases. The numbers on the right indicate the proteins percentage 

sequence identities. (Adapted from ((Keen and Taylor, 2004; Nguyen et 

al., 2005)) 

 

Although the catalytic domains of the Aurora kinases are highly 

conserved, they have very distinct subcellular localizations (Carmena and 

Earnshaw, 2003). While AurA maintains an association with the centrosomes, 

AurB is a chromosomal passenger protein that migrates during mitosis 
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(Figure 4). In G1, the levels of both AurA and B are significantly reduced. By 

prophase, AurA is at the centrosomes whereas AurB is nuclear. In 

metaphase, AurA is on the microtubules near the spindle poles and AurB is 

on the centromeres. As the cells progress to anaphase, the majority of AurA 

is on the polar microtubules and AurB is at the spindle midzone. However, at 

the culmination of the cell cycle, both AurA and B are at the cell midbody 

where they participate in cytokinesis. 
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Figure 4. Localization of AurA and B kinase during mitosis (Adapted 

from (Carmena and Earnshaw, 2003) 
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AurA and B are essential for the proper execution of various mitotic 

events. The mitotic roles of AurA and B have been elucidated using 

techniques such as Aur-depletion, -inhibition and RNA interference (RNAi). 

AurA plays a role in centrosome duplication, maturation and separation, 

mitotic entry, bipolar spindle assembly and stability, chromosome alignment 

and cytokinesis, whereas AurB participates in phosphorylation of histone H3, 

chromosome alignment, chromosome segregation and cytokinesis. AurB 

binds three other chromosomal passenger proteins: inner centromere protein 

(INCENP), survivin and borealin (Keen and Taylor, 2004). Proper localization 

and function of any of these proteins is dependent on the other three. 

Substrates for both AurA (Mendez et al., 2000; Katayama et al., 2001; Du and 

Hannon, 2002; Giet et al., 2002; Gigoux et al., 2002; Kufer et al., 2002; Sakai 

et al., 2002; Castro et al., 2003; Hirota et al., 2003; Kunitoku et al., 2003; 

Dutertre et al., 2004; Katayama et al., 2004; Ouchi et al., 2004; Tien et al., 

2004; Toji et al., 2004; Troiani et al., 2005) and AurB (Giet and Glover, 2001; 

Zeitlin et al., 2001; Bishop and Schumacher, 2002; Rogers et al., 2002; Goto 

et al., 2003; Kawajiri et al., 2003; Minoshima et al., 2003; Lan et al., 2004; 

Guse et al., 2005; Delacour-Larose et al., 2007) have been identified (Table 

2), yet whether all of these substrates are actually phosphorylated in vivo 

remains to be determined. The expression of both AurA and B peaks at the 

G2/M transition and kinase activity is maximal during mitosis (Katayama et 

al., 2003). 
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Table 2. Known substrates of AurA and B. Common substrates to both 

are bolded. 

AurA substrates 

Ajuba Eg5 p53 

BRCA1 Hec 1 PP1 

CDC25B Histone H3 Ras GAP 

Cdh-1 hsNuf2 TACC 

CENP-A/B Lats2 TPX2 

Centrin 2 MBD3 Survivin 

CPEB NM23-H1 Vimentin 

 

AurB substrates 

CENP-A INCENP Myosin II 

Desmin MCAK Survivin 

GFAP MgcRacGAP Topoisomerase IIα 

Histone H3 MKLP1 Vimentin 

 

Presently, the most extensively studied Aurora kinase is AurA. Ectopic 

expression of AurA, active or not, leads to CA (Zhou et al., 1998; Meraldi et 

al., 2002). The over-expression of kinase active AurA has the ability to 

transform NIH3T3 cells and when implanted in nude mice induces tumor 
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formation, thus supporting the role of AurA as an oncogene (Bischoff et al., 

1998; Zhou et al., 1998). While it appears that over-expression of AurA is 

sufficient to deregulate the centrosome cycle leading to centrosome 

abnormalities, its kinase activity is necessary to cause transformation leading 

to tumor formation.  

AurA over-expression has been reported in hematological tumors and 

nearly all human solid tumors including: liver with a frequency or 61% (Jeng 

et al., 2004), esophageal with a frequency of 58% (Tong et al., 2004), lung 

(Haruki et al., 2001), gastric with a frequency of 50% (Sakakura et al., 2001), 

prostate (Bar-Shira et al., 2002), non-Hodgkins lymphoma (Yakushijin et al., 

2004), bladder with a frequency of 75% (Sen et al., 2002), pancreatic with a 

frequency of 58% (Han et al., 2002; Li et al., 2003a), colorectal with a 

frequency of 50% (Bischoff et al., 1998), kidney with a frequency of 95% 

(Ehara et al., 2003), ovarian with a frequency of 57% (Gritsko et al., 2003), 

endometrial (Moreno-Bueno et al., 2003) and breast (Tanaka et al., 1999). Of 

note, reports indicate that AurA is over-expressed with a frequency of 94% in 

human DCISs and primary invasive mammary carcinomas (Tanaka et al., 

1999) coming in second only behind kidney tumors (Ehara et al., 2003). 

Interestingly, AurA over-expression is not commonly correlated with gene 

amplification indicating that other mechanisms such as transcriptional 

activation and suppression of protein degradation must also play a role in 

AurA regulation (Marumoto et al., 2005). While significantly less is known 
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about AurB and its role in oncogenesis, it is known that AurA and B 

expression levels appear to rise or decline in parallel (Keen and Taylor, 

2004). While no direct link has as yet been found between AurA over-

expression and centrosome abnormalities, AurA overexpression, CA and 

aneuploidy invariably occur together.  

The over-expression of Aurora kinases has been strongly linked to 

oncogenesis as well as tumor proliferation. This has led to the development of 

a new class of anti-cancer drugs that specifically targets the ATP-binding 

domain of the Aurora kinases. Currently, eight novel Aurora kinase inhibitors 

have been described. Of these, VX-680 (Harrington et al., 2004) has shown 

promising results both in vitro and in vivo and is the first Aurora kinase 

inhibitor to enter clinical trials. The high frequency of AurA over-expression, 

~94%, in human BC (Tanaka et al., 1999) and in the ACI rat E2-induced 

mammary tumors (Li et al., 2004), provides strong evidence that small 

molecule inhibitors like VX-680 may provide a new approach to BC therapy.  

 

1.6 The Normal Centrosome Cycle 

Centrosomes are cellular organelles located in the cytoplasm adjacent 

to the nucleus. They consist of a pair of barrel shaped centrioles composed of 

a radial array of nine microtubule triplets and a surrounding halo of protein 

dense pericentriolar matrix (Delattre and Gonczy, 2004). The pericentriolar 

matrix contains γ-tubulin ring complexes where microtubule nucleating activity 
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resides. In eukaryotic cells, the centrosome functions as the major 

microtubule organizing center (MTOC), the focal point from which 

microtubules emanate. Therefore, the centrosome influences all microtubule 

dependent processes including organelle transport, cell shape, polarity and 

motility (Meraldi and Nigg, 2002). Other important functions of the 

centrosomes occur during mitosis, when the centrosomes aid in establishing 

a bipolar spindle apparatus and cytokinesis (Wang et al., 2004). 

In normal cells, centrosomes duplicate only once in each cell cycle to 

give rise to two mitotic spindle poles. The centrosome cycle has been divided 

into a series of discrete events commonly referred to as centriole 

disengagement, centriole duplication, centrosome maturation and centrosome 

separation (Meraldi and Nigg, 2002). Centrosome duplication is closely 

coordinated with the stages of the cell cycle (Figure 5). The interphase 

centrosome consists of a pair of centrioles surrounded by pericentriolar 

matrix. Duplication begins in S phase when the two centrioles lose their 

orthogonal arrangement in a process termed centriole disengagement that 

requires the protease separase (Tsou and Stearns, 2006). Centrin, a 

ubiquitous centrosome protein component, is required for centriole duplication 

(Salisbury et al., 2002) which begins with the formation of procentriole buds at 

the proximal end of each of the original centrioles. The procentrioles mature 

during S phase and G2. The separation of the two mature centrosomes 

occurs at the G2/M transition. The two mature centrosomes separate from 
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each other and move to opposite ends of the cell where they establish the 

bipolar mitotic spindle which helps ensure that chromosomes are equally 

segregated during mitosis. 

While the mechanism by which the centrosome is duplicated during 

cell division is largely unknown, it remains an active area of research. A large 

body of evidence has accumulated suggesting that centrosome duplication is 

tightly linked to cell cycle progression through interacting regulatory 

pathways. These regulators include cdk2/cyclin A and E which control the 

cell, centrosome and DNA cycles and have been implicated in triggering 

centriole duplication (Hinchcliffe et al., 1999; Lacey et al., 1999; Matsumoto et 

al., 1999; Meraldi et al., 1999; Tsou and Stearns, 2006). In addition, the 

mitotic kinases, Aurora, Polo and Nek families, have been implicated in 

centriole duplication (Meraldi and Nigg, 2001; Barr et al., 2004) as has the 

APC which ensures that centrioles duplicate only once per cell cycle (Tsou 

and Stearns, 2006). 
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Figure 5. The normal centrosome cycle 

 

 

1.7 The p53-MDM2 Pathway 

p53 is a tumor suppressor protein which plays an important role in 

protecting the genomic stability of the cell. In normal cells, p53 is kept at low 

levels by MDM2 to regulate cell growth under control (Barak et al., 1993; Wu 

et al., 1993). In response to DNA damage, or other cellular stresses, p53 is 

stabilized to modulate transcription of its effector genes (Vogelstein et al., 

2000). This induces a variety of cellular responses. The most common 

responses are cell cycle arrest allowing the cell to repair damaged DNA, and 
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apoptosis leading to the elimination of damaged cells (Oren, 2003). These 

mechanisms ensure that damaged cells are either repaired or deleted from 

the genome, thus maintaining the genetic integrity of the cell. This is why p53 

is called the guardian of the genome.  

MDM2 (mouse double minute 2) is a nuclear proto-oncogene regulated 

by p53 through a p53 binding site present in the MDM2 gene (Wu et al., 

1993). An important function of MDM2 is to regulate the expression of p53. 

MDM2 accomplishes this function in two ways: it may bind to and inhibit p53 

transcriptional activity (Momand et al., 1992), or it may promote the rapid 

degradation of p53 through the ubiquitin-dependent proteosome pathway 

(Haupt et al., 1997).  



28  

Figure 6. The p53 pathway 

 

 

When p53 was discovered in 1979, it was classified as an oncogene 

because of its increased expression in various human tumors. It was not until 

10 years later, when it was discovered that the originally isolated p53 was a 

mutant, that p53 was correctly characterized as a tumor suppressor gene. 

Loss of p53wt function is common in many human malignancies (~50%) 

(Caron de Fromentel and Soussi, 1992; Greenblatt et al., 1994) thus leading 

to a loss of its tumor suppressor properties. Loss of p53wt function occurs 

either via mutation or through an inhibition of its transcriptional activation 

(Vogelstein et al., 2000). In human BC, p53 mutations are less common 

(~20%) (Pharoah et al., 1999; Gasco et al., 2002). In tumors that retain p53wt, 
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like BC, p53 inactivation occurs through the deregulation and over-expression 

of MDM2 (Oliner et al., 1992; Finlay, 1993). When MDM2 is over-expressed, 

it binds to and ubiquitinates p53wt leading to its degradation by the 

proteosome. MDM2 possesses activity of an E3 ubiquitin ligase allowing it to 

target p53 for degradation. This inhibits p53wt function compromising the 

genetic stability of the cell. Loss of p53wt function induces a cascade of 

molecular changes that include CA, CIN/aneuploidy (Fukasawa et al., 1996; 

Fukasawa et al., 1997; Carroll et al., 1999) and oncogenic transformation. 

In addition to p53wt regulation, the expression of ERα has been shown 

to induce MDM2 transcription (Phelps et al., 2003). MDM2 mRNA and protein 

levels are increased in ERα+ BC tumors (Marchetti et al., 1995; Bueso-Ramos 

et al., 1996). Recently, a single nucleotide polymorphism, SNP309 T/G, was 

identified in the MDM2 promoter region that also binds ERα (Kinyamu and 

Archer, 2003; Bond et al., 2004). This SNP has been associated with 

attenuation of the p53 pathway and accelerated tumor formation in a gender-

specific and hormone-dependent manner, suggesting that hormones, like 

estrogen, may alter oncogenesis (Bond et al., 2006). 

Interrupting the p53-MDM2 interaction may presumably restore 

endogenous p53 function and be an important anti-cancer approach. Two 

small molecule inhibitors that interrupt this interaction have been reported, 

nutlins (Vassilev et al., 2004) and Reactivation of p53 and Induction of Tumor 

cell Apoptosis (RITA) (Issaeva et al., 2004). Nutlins bind to the p53-binding 
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site of MDM2 blocking the p53-MDM2 interaction. In contrast, RITA binds to 

p53 inhibiting the binding of MDM2 to p53 and its inactivation. Both molecules 

are effective as anti-tumor agents in vitro. RITA has also shown promising 

anti-tumor effects in vivo without significant adverse effects.  

  

1.8 Centrosome Amplification, Chromosomal Instability and 

Aneuploidy in Human Breast Cancer 

Genomic instability is one of the driving forces in the development and 

progression of malignant tumors. Two forms of genomic instability have been 

identified in cancer, microsatellite instability (MIN) and CIN (Boland et al., 

1998). MIN refers to gene mutations involved in DNA synthesis and repair, 

uncommon in most cancers, that essentially give rise to diploid tumors 

whereas CIN, a common characteristic of malignancy, results from the 

deregulation of the centrosome cycle leading to abnormal chromosomal 

separation and aneuploidy.  

Aneuploidy, the state of an altered chromosome number, is a 

consistent feature observed in nearly all types of cancer (Lengauer et al., 

1998). Almost a century ago, Boveri suggested that aneuploidy in cancer cells 

may occur through defects in chromosome segregation machinery (Boveri, 

1914). Boveri’s suggestion was based on his sea urchin embryo studies that 

exhibited abnormal chromosome segregation following fertilization of an egg 

with two sperm. Boveri noticed similarities between the chromosome 
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abnormalities in sea urchin embryos and those reported in cancer, these 

similarities led to his hypothesis that malignant tumors arise through 

centrosome defects that result in improper cell division. A growing body of 

evidence now supports his hypothesis.  

CIN, the rate of change in chromosome number, is the result of the 

deregulation of the normal centrosome cycle leading to CA. CA is defined as 

an increase in centrosome volume and number within a single cell, 

accumulation of excess pericentriolar material, increased microtubule 

nucleation capacity and inappropriate phosphorylation of centrosomal 

proteins (Lingle et al., 1998). A consequence of CA is the formation of 

multipolar mitotic spindles (Wang et al., 2004) leading to abnormal 

segregation of chromosomes and aneuploidy (Salisbury et al., 1999). CA 

occurs at a very early stage of cell transformation, most often resulting in 

mitotic catastrophe and eventual apoptosis. However, selection drives 

survival and proliferation of some of these cells that have acquired a growth 

advantage (Salisbury et al., 1999).  

Centrosome duplication and DNA replication are usually tightly linked 

and essential to ensure equal chromosomal segregation during cell division 

(Sluder and Hinchcliffe, 2000). In cancer, these two events may be uncoupled 

leading to CA, increased frequency of multipolar mitotic spindles and CIN 

(Lingle et al., 1998; Pihan et al., 2001; D'Assoro et al., 2002). The Aurora 

kinases play a major role in centrosome separation and maturation. All three 
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human Aurora kinases are over-expressed in many human cancers where CA 

has been observed. Because of this, the expression of the Aurora kinases, 

more specifically AurA, has become the focus as to one possible cause of CA 

(Zhou et al., 1998).  

In a study of human breast tumors, significant centrosome alterations, 

including supernumerary centrioles, excess pericentriolar material, disrupted 

centriole barrel structure, unincorporated microtubule complexes, centrioles of 

unusual length, centrioles functioning as ciliary basal bodies and 

mispositioned centrosomes, were observed (Lingle and Salisbury, 1999). 

AurA over-expression, CA, CIN and aneuploidy are defining features of 

human BC, as well as in E2-induced ACI rat mammary tumor and Syrian 

hamster kidney tumor models. These traits of human BC have been detected 

in 55-78% of human DCISs and 85-92% of human IDBCs (Makris et al., 1997; 

Arnerlov et al., 2001; Li et al., 2002a). Similarly, CA, CIN and aneuploidy have 

been reported in 84% and 91% of E2-induced rat mammary DCISs and 

primary mammary tumors (Li et al., 2002a) respectively, and in 92% of 

E2/DES-induced hamster kidney tumors (Li et al., 2001). There is growing 

evidence that these characteristics occur early and therefore, may be 

important in neoplastic transformation rather than a consequence of tumor 

progression. 

The G1/S and G2/M cell cycle checkpoints, that normally ensure the 

orderly progression of cell cycle events, can also be inactivated in cancer 
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(Hartwell and Weinert, 1989). In normal cells, DNA damage triggers 

checkpoint activation through the tumor suppressor p53 and up-regulation of 

its downstream targets. However, in some malignant tumors a p53 mutation 

has been correlated with the occurrence of CA (Weber et al., 1998; Carroll et 

al., 1999; Ouyang et al., 2001; Jeng et al., 2004; Zhu et al., 2005). In BC, 

tumors that express p53wt, as well as CA, also over-express MDM2 which 

inactivates p53wt by promoting its degradation (Carroll et al., 1999). In 

addition, the phosphorylation of p53wt by AurA at serine 315 makes it more 

susceptible to ubiquitination by MDM2 and proteolysis (Katayama et al., 

2004). Recently, it has been shown that AurA also phosphorylates p53wt at 

serine 215 which abrogates its function. This phosphorylation inhibits p53wt 

DNA binding and transcriptional activation leading to an AurA override 

causing cell cycle progression, survival and transformation (Liu et al., 2004). 

CA and CIN also develops independently of p53 mutations suggesting 

the presence of other mechanisms leading to the disruption of chromosome 

segregation. The oncogenes E6 and E7 (Duensing et al., 2000), associated 

with human papillomavirus (HPV), and mutations in BRCA1 and BRCA2 

(Deng, 2002), tumor suppressor genes associated with the development of 

familial breast and ovarian cancers, have been suggested as possible culprits 

as have cyclin E and c-myc. Deregulation of cyclin E affects processes 

involved in duplication and segregation of chromosomes leading to CIN 

(Spruck et al., 1999), and c-myc over-expression has been implicated in 
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oncogenesis by allowing accelerated passage through the G1/S checkpoint 

resulting in genomic instability (Felsher and Bishop, 1999).  

It is interesting that the over-expression of AurA and p53wt loss of 

function result in a similar cascade of CA, CIN and aneuploidy. Understanding 

these two converging pathways that lead to oncogenic transformation may 

prove to be an important step in the study of BC.  
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Chapter 2: Statement of Purpose 
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2.1 Significance 

BC is the number one diagnosed cancer in women in the United 

States. About 90-95% of all BCs are sporadic. It is evident that endogenous 

and exogenous estrogens play a crucial role in both BC causation and 

development (Bilimoria and Morrow, 1995). The role of estrogens in breast 

oncogenesis is beginning to be unraveled. Recently, AurA has been shown to 

be over-expressed in human BC (Tanaka et al., 1999). Aur kinases are part of 

a family of mitotic kinases that when aberrantly expressed may cause errors 

in mitosis that may result in the transformation of normal cells. The over-

expression of AurA has been correlated with CA, CIN and aneuploidy, all of 

which are characteristics of virtually all human solid tumors examined.  

Over the years, Li and Li have shown that E2-induced oncogenesis in 

the male Syrian hamster kidney and the female ACI rat mammary gland are 

unique animal models that mimic the molecular/cellular events reported in 

some human cancers (Li et al., 2001; Li et al., 2004). In particular, the 

morphological changes observed in the E2-induced mammary tumors of the 

ACI rat are remarkably similar to those seen in human BC. Therefore, these 

animal models are excellent tools to study the mechanisms involved in E2-

induced oncogenesis. 
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2.2 Overall Hypothesis 

The main objectives of these studies represent an attempt to 

understand the molecular and cellular events involved in solely E2-induced 

oncogenesis, using the E2-induced tumors of the kidney in the male Syrian 

hamster or the mammary gland in the female ACI rat. The main focus is to 

determine the role of the mitotic kinases AurA and B and the p53wt-MDM2 

interaction, likely contributors of CIN through CA, in estrogen oncogenesis. 

We hypothesize that E2 treatment in castrated, male Syrian hamsters 

induces oncogenesis in the kidney resulting from the over-expression 

and increased activity of AurA and B. We propose that the over-

expression of the Aur kinases leads to increased expression and 

deregulated phosphorylation of some of their centrosomal protein 

substrates, thus eliciting CA and CIN. We further propose that the loss 

of p53wt, a key tumor suppressor protein, is due to the over-expression 

of MDM2 and that by blocking the binding of MDM2 with the inhibitor, 

RITA, p53wt function will be retained. These studies will provide evidence to 

determine whether or not the over-expression of the Aur kinases is a crucial 

and early event controlling the integrity of chromosomal segregation and 

cytokinesis at cell division during E2-driven oncogenesis, and whether the 

over-expression of MDM2 leads to the loss of p53wt function during E2-

induced oncogenesis. The ultimate goal of these studies is to identify early 

molecular and cellular changes during E2-induced oncogenesis that will 
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provide new novel targets for the prevention and therapeutic intervention of 

human sporadic BC. 

 

2.3 Specific Aims Purpose 

2.3.1 Specific Aim 1. To determine the tissue localization, 

expression, activity and regulation of the mitotic kinases, AurA and B, in 

E2-induced tumors in the Syrian hamster kidney. 

The Aur kinases are essential for proper mitosis and thus, essential in 

maintaining genomic integrity. Over-expression of active AurA kinase has 

been shown to transform NIH3T3 cells, and yield tumor formation when 

implanted in nude mice, thus supporting the role of AurA as an oncoprotein 

(Bischoff et al., 1998; Zhou et al., 1998). AurA over-expression has been 

reported in a number of human solid tumors and reports indicate that it is 

over-expressed in 94% of human DCISs and in 94% of primary invasive 

breast neoplasms (Tanaka et al., 1999). While significantly less is known 

about AurB and its role in oncogenesis, it has been shown that the expression 

levels of both kinases appear to rise/decline in parallel (Keen and Taylor, 

2004).  

Previous studies in the Li laboratory have determined the localization 

and expression of AurA in E2-induced ACI rat mammary oncogenesis (Li et 

al., 2004). These studies showed an increase of AurA expression in both E2-

treated mammary glands and -induced tumors as compared to untreated 
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mammary glands at both the mRNA and protein levels. Parallel samples 

showed CA and CIN, suggesting a causal link among estrogen exposure, 

AurA over-expression, CA, CIN and aneuploidy eventually leading to 

mammary oncogenesis. 

The localization, level of expression, kinetic activity and regulation of 

AurA and B were evaluated in hamster kidneys from age-matched control 

cholesterol-treated animals, E2-treated animals and -induced tumors in the 

hamster kidney. Tissue localization was determined by 

immunohistochemistry, and the levels of protein and mRNA expression by 

Western blot analysis and real-time PCR, respectively. The kinetic activity 

was studied using an in vitro kinase assay and the estrogen regulation by an 

E2 removal/inhibition study. The data obtained from these studies provides 

data on the over-expression of AurA and B which have shown to be important 

early events in E2-induced oncogenesis leading to CA. 

 

2.3.2 Specific Aim 2. To determine the differential 

expression/phosphorylation of selected Aur kinase substrates that 

contribute to the deregulation of the centrosome cycle thus causing CA 

and CIN during E2-induced oncogenesis. 

Evidence indicates that AurA and B over-expression elicits CA leading 

to CIN and aneuploidy, all of these events are defining characteristics of 

human sporadic BC. It is likely that the over-expressed AurA and B 
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inappropriately phosphorylates centrosomal protein targets leading to CA and 

abnormalities in chromosome segregation and cytokinesis. AurA and B 

kinases are known to bind/phosphorylate a myriad of protein substrates, 

some of which have yet to be identified. It is hypothesized that when AurA 

and B are over-expressed, they may be inappropriately acting on one or more 

of their protein substrates to precipitate development of CA. 

AurA and B are known to play an important role in regulating crucial 

events during mitosis. Based on these known roles of AurA and B, we 

proposed to determine the expression level and phosphorylation of four 

known Aur substrates, centrin, histone H3, protein phosphatase 1 (PP1) and 

targeting protein for Xklp2 (TPX2). The rationale for the use of these 

substrates is as follows: Centrin: It is a ubiquitous component of the 

centrosome essential for proper centriole and centrosome duplication 

(Salisbury et al., 2002). Recently, it has been identified as an AurA substrate 

that may play a role in the ability of AurA over-expression to cause CA 

(Lukasiewicz, 2007). Histone H3:  Phosphorylation of histone H3 is required 

for proper chromosome condensation, and has been suggested to play a role 

in the interaction of the N-terminus of histone H3 and DNA (Van Hooser et al., 

1998). This role is important in facilitating CA by inappropriate or excessive 

phosphorylation, required for cell cycle progression, in the presence of AurA 

and B over-expression. PP1: It is a Ser/Thr phosphatase that can 

dephosphorylate AurA leading to its inactivation (Satinover et al., 2004). In 



41  

addition, active AurA can phosphorylate PP1 reducing its phosphatase 

activity (Katayama et al., 2001). TPX2:  It interacts with AurA as both an 

activator and a substrate. TPX2 is a microtubule-associated protein that 

stimulates AurA auto-phosphorylation at Thr288 and induces a change in 

AurA conformation. This conformation change protects AurA from inactivation 

from PP1 dephosphorylation. TPX2 is phosphorylated by AurA and then 

recruits AurA to the spindle microtubules (Kufer et al., 2002).  

  Most of the information on the centrosomal protein substrates of AurA 

and B originated from studies employing Xenopus, Drosophila, yeast, bacteria 

and tumor cell lines. Using the male Syrian hamster kidney and the female 

ACI rat mammary gland models, the studies proposed in this aim applied a 

molecular approach to characterize known centrosomal proteins that 

specifically interact, and are phosphorylated by AurA and B. Tissue 

localization was determined by immunohistochemistry, and the levels of 

protein expression by Western blot analysis. The estrogen regulation of some 

of these substrates was analyzed in an E2 pellet removal/inhibition study. The 

elucidation of the expression of these centrosomal proteins and 

phosphorylation by AurA and B was considered essential to assess whether 

these proteins play a crucial role in E2-induced oncogenesis. 
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2.3.3 Specific Aim 3. To determine whether p53wt function is lost 

due to the enhanced degradation induced by the over-expression of 

MDM2 during E2-induced oncogenesis, thus enhancing conditions for 

CA, CIN and oncogenic transformation.  

Loss of p53wt, an important tumor suppressor, is known to facilitate CA, 

CIN (Fukasawa et al., 1996; Fukasawa et al., 1997) and oncogenic 

transformation. Loss of p53wt function is common in many human 

malignancies. Mutations of p53wt account for about 50% of the loss observed 

(Caron de Fromentel and Soussi, 1992; Greenblatt et al., 1994). Mutations in 

p53wt are relatively uncommon in BC (15-20%) (Pharoah et al., 1999; Gasco 

et al., 2002) suggesting that loss of p53wt function is occurring by other means 

during breast oncogenesis. Two mechanisms have been proposed: 1. MDM2 

binds to p53wt resulting in its inactivation. 2. The over-expression of AurA 

leads to the phosphorylation of p53wt making it more susceptible to MDM2 

degradation (Katayama et al., 2004). 

MDM2 is an oncoprotein that acts as an E3 ubiquitin ligase targeting 

p53wt for destruction by proteosomes. Over-expressed MDM2 decreases 

p53wt levels and inhibits the DNA damage checkpoint and DNA repair. MDM2 

is over-expressed in 73% of human BCs at both the mRNA and protein levels 

(Bueso-Ramos et al., 1996).  

Interrupting the p53wt-MDM2 interaction may presumably restore 

endogenous p53wt function and be an important anti-cancer approach. A 
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small molecule inhibitor that binds to p53wt, RITA (Issaeva et al., 2004) was 

used to inhibit the binding of MDM2 to p53wt. RITA has shown promising anti-

tumor effects in vitro and in vivo without significant adverse effects. 

Protein and mRNA expression and regulation of MDM2 and p53wt were 

evaluated in hamster kidneys and mammary glands from age-matched 

control cholesterol-treated animals and E2-induced tumors. The levels of 

protein and mRNA expression were determined by Western blot analysis and 

real-time PCR, respectively. The estrogen regulation of MDM2 and p53wt was 

studied by an E2 pellet removal/inhibition study. In addition, RITAs ability to 

restore p53wt function was assessed in hamsters bearing E2-induced tumors 

in the kidney. The data obtained from these studies provides important 

information on the p53wt-MDM2 interaction during E2-induced breast 

oncogenesis. 
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Chapter 3: Materials and Methods 
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3.1 Animals and treatment  

Adult castrated male Syrian golden hamsters (LAK:LVG), outbred 

strain, weighing 90-100 g were purchased from Harlan Sprague-Dawley Inc. 

(Indianapolis, IN). They were housed in facilities certified by the American 

Association for the Accreditation of Laboratory Animal Care, acclimated for at 

least one week prior to use, maintained on a 12-hr light:12-hr dark cycle, fed 

certified rodent chow (Ralston-Purina 5002) and tap water ad libitum. The 

animal studies were carried out in adherence to the guidelines established in 

the “Guide for the Care and Use of Laboratory Animals,” (US Department of 

Health and Human Resources, NIH, 1985). Hamsters in the treatment groups 

were sc implanted with 20 mg E2 pellets as described previously (Li et al., 

1980). Age-matched control animals were implanted with 20 mg pellets of 

cholesterol. To maintain constant levels of E2, new pellets were implanted 

every 3.0 months. Their mean daily absorption was 96 ± 4 μg/day. The pellets 

were prepared by Hormone Pellet Press (Shawnee Mission, KS). Over a 6.0 

month period of E2 treatment, the average E2 concentration in serum was 

2.28 ± 0.43 ng/mL, and in the kidney was 4.57 ± 1.04 pg/mg protein (Li et al., 

1994).  

For the withdrawal studies, E2-treated hamsters for 6.0 months and 

bearing tumors were divided into four groups: 1) Maintained on E2 treatment. 

2) Withdrawn of both E2 pellets. 3) Withdrawn of the initial E2 pellet, while the 

second one remained and additionally implanted with 2 pellets of 20 mg 
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Tamoxifen citrate (Tx). 4) Control age-matched cholesterol-treated. All 

animals were killed ten days after removal of the E2 pellets and the Tx 

treatment, tumors were individually harvested from groups 1-3 and kidneys 

from group 4 for subsequent analysis. The withdrawal/treatment period was 

selected because it has been previously shown that after a 72 h E2-withdraw 

period, all estrogens are completely cleared from the circulation of E2-treated 

animals (Li et al., 1994).  

For the RITA studies, 6.0 month, E2-treated hamsters bearing tumors 

were divided into three groups. Each group was injected ip daily for 15 days 

with: 1) 0.1 mL/100 g BW vehicle. 2) 0.75 mg RITA/100 g BW. 3) 1.0 mg 

RITA/100 g BW. All animals were killed on day 16. Tumors were harvested 

for subsequent analysis. The treatment period/dose was based on a previous 

in vivo mouse study in which 1.0 mg RITA/100 g BW resulted in a decreased 

tumor volume and the inhibition of MDM2-p53wt complex formation (Issaeva 

et al., 2004).  

Intact female ACI rats were purchased from Harlan Sprague Dawley 

Inc. (Indianapolis, IN) at 6-8 weeks of age. They were housed in facilities 

certified by the American Association for the Accreditation of Laboratory 

Animal Care, acclimated for at least one week prior to use, maintained on a 

12-hr light:12-hr dark cycle, fed Teklad Rodent Diet 8604 and tap water ad 

libitum. The animal studies were carried out in adherence to the guidelines 

established in the “Guide for the Care and Use of Laboratory Animals,” (US 
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Department of Health and Human Resources, NIH, 1985). Rats in the 

treatment groups were implanted sc with 20 mg pellets containing 3 mg of E2 

plus 17 mg of cholesterol as previously described (Li et al., 2004). Age-

matched control animals were implanted with 20 mg pellets of cholesterol. 

The pellets were prepared by Hormone Pellet Press (Shawnee Mission, KS). 

Over the treatment period, the average E2 serum levels were 123.5 ± 4.8 

pg/mL (4.0 months) and 121.8 ± 3.0 pg/mL (6.0 months) (Li et al., 2002b). 

For the withdrawal studies, 6.0 month E2-treated rats bearing tumors, 

were divided into four groups: 1) Maintained on E2 treatment. 2) E2 pellet 

treatment removed. 3) Maintained on E2-treatment plus additional 

implantation of 2 pellets of 20 mg Tx. 4) Control age-matched cholesterol-

treated. All animals were killed 8 days after the removal of the E2 pellet and 

the Tx treatment. Tumors were individually harvested from groups 1-3 and 

mammary glands from group 4 for subsequent analysis. The 

withdrawal/treatment period was selected based on tumor regression studies 

performed by DiAugustine (unpublished data).  

 

3.2 Western blot 

Kidneys, mammary glands and tumors were homogenized in lysis 

buffer containing 50 mM Tris-HCl pH7.4, 0.2 M NaCl, 2 mM EDTA, 0.5% NP-

40, 50 mM NaF, 0.5 mM Na3VO4, 20 mM Na-pyrophosphate, 1 mM PMSF, 10 

µg/mL aprotinin, 10 µg/mL leupeptin, and 1 mM DTT. The supernatant 
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fractions were collected and their protein content determined with BCA 

reagents (Pierce, Rockford, IL). Proteins were separated by gel 

electrophoresis on PAGEr Gold Precast Gels (Cambrex Bio Science 

Rockland, Inc, Rockland ME) or Pierce Precise Protein Gels (Pierce) and 

transferred to a nitrocellulose membrane (PVDF membrane for Centrin). The 

following primary antibodies were used: AurA BL656 (Bethyl Labs, 

Montgomery, TX, 1:1000), AurB ab2254 (Abcam, Cambridge, MA, 1:1000), 

Centrin MCI (Salisbury, JL, Mayo Clinic, Rochester, MN, 1:25000), γ-tubulin 

MMR58 (Salisbury, JL, 1:10000), Bax 2772 (Cell Signaling Technology, 

Danvers, MA, 1:1000), histone H3 (FL-136) sc-10809 (1:1000), PP1 (E9) sc-

7482 (1:5000), TPX2 (H-300) sc-32863 (1:1000), MDM2 (SMP14) sc-965 

(1:200), p53 (Pab 240) sc-99 (1:200) and p21 (M-19) sc-471 (1:200), all from 

Santa Cruz Biotechnology, Santa Cruz, CA. The membranes were incubated 

overnight at 4oC with primary antibody followed by incubation with appropriate 

secondary antibodies for 2 hrs. Protein expression was visualized with ECL 

chemiluminescence (Amersham Biosciences, Piscataway, NJ). Densitometry 

was done using Alpha Imager 2000 (Alpha Innotech, San Leandro, CA) or 

Northern Light model B 95 (Imaging Research Inc., Ontario, Canada) and 

Scion Image software (Scion Corporation, Frederick, MD). 
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3.3 In vitro protein kinase assay 

Proteins were extracted as described for Western blotting. Aliquots, 

200 μg of total protein extracts, were incubated for 2 hrs at room temperature 

with 1 μg of AurA BL469 (Bethyl Labs) followed by a 2 hr incubation with 30 

μL Protein A/G PLUS-agarose sc-2003 (Santa Cruz Biotechnology). Normal 

IgG was used as a negative control. Immunoprecipitated complexes were 

washed several times with PBS and immediately used for kinase assays 

(Upstate, Inc., Charlottesville, VA) following the manufacturers standard 

protocol with slight modifications. Immunoprecipitates were incubated for 30 

mins at 30oC with 5X reaction buffer (40 mM MOPS, pH 7.0, 1 mM EDTA), 10 

µCi/µL of [32P]γATP (Amersham Biosciences) diluted in Upstate Mg/ATP 

cocktail. Reactions were spotted onto P81 paper, subjected to a series of 

washes in 0.75% phosphoric acid and acetone and counts per min measured 

using a scintillation counter (Beckman Coulter, Fullerton, CA).  

 

3.4 Reverse transcription PCR and quantitative real-time PCR   

Total RNA was extracted using the protocol supplied by GibcoBRL for 

Trizol Reagent (Invitrogen Corp., Carlsbad, CA). RNA integrity was evaluated 

by agarose gel electrophoresis and the RNA concentration determined by 

spectrometry.  

Reverse transcription for AurA was performed using 5 μg of total 

RNA/5 μl. First strand synthesis was performed using the manufacturer’s 
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protocol for M-MLV reverse transcriptase (Invitrogen Corp.). The reverse 

transcription reaction was performed using an iCycler thermocycler (Bio-Rad 

Laboratories, Hercules, CA). The thermocycling protocol consisted of 1 hr 

incubation at 37oC followed by 10 min incubation at 96oC. The samples were 

stored at 4oC until used for PCR analysis. 

Reverse transcription for MDM2 and p53wt was performed using 5 μg 

of total RNA/5 μl using a High Capacity cDNA Reverse Transcription Kit 

(Applied Biosystems, Foster City, CA). The reaction was performed using an 

iCycler thermocycler (Bio-Rad Laboratories). The thermocycling protocol 

consisted of incubations for 10 mins at 25oC, 120 mins at 37oC followed by 5 

secs at 85oC. The samples were stored at 4oC until used for PCR analysis. 

The cDNA synthesized during the reverse transcription reaction was 

used to perform the real-time PCR reaction. For AurA, cDNA was amplified 

using the Platinum® SYBR® Green qPCR SuperMix UDG (Invitrogen Corp.) 

and gene specific primers for β-actin (FWD 5’-CAG CCG AGA GGG AAA 

TTG TG-3’; REV 5’-TCG TTG CCA ATG GTG ATG AC-3’; 101 bp amplicon)  

and AurA (FWD 5’-TGG GTG TGT GCC TCG AAA-3’; REV 5’-GAT TGA 

AGG CCG GAT GCA-3’; 102 bp amplicon) in a 7300 Real Time PCR System 

(Applied Biosystems). The thermocycling protocol consisted of incubations for 

2 mins at 50oC followed by 10 mins at 95oC. Then, the samples underwent 40 

cycles of 45 secs each at 95oC, 60oC and 72oC. The specificity of the 

amplicon was verified by running a dissociation step.  
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For MDM2 and p53wt, cDNA was amplified using Power Sybr® Green 

PCR master mix (Applied Biosystems)  and gene specific primers for β-actin 

(FWD 5’-CAG CCG AGA GGG AAA TTG TG-3’; REV 5’-TCG TTG CCA ATG 

GTG ATG AC-3’; 101 bp amplicon), MDM2 (Syrian hamster kidney - FWD 5’-

ACA GAT GTT GGA CTC TGC GTG AGA-3’; REV 5’-ATC TAA GCC TTC 

TGC CTC CAG CTT -3’; 101 bp amplicon) (ACI rat mammary gland - FWD 5’-

AGA TGT GCC TGA TGG CAA AA-3’; REV 5’-AAG TCG ACG GCT GGG 

AAT AG-3’; 128 bp amplicon) and p53wt (Syrian hamster kidney - FWD 5’-

GAA GGA AAT ATG CAT GCC GAA T-3’; REV 5’-CTC ATA GGG CAC CAC 

CAC ACT-3’; 72 bp amplicon) (ACI rat mammary gland - FWD 5’-CGA AAT 

CCT ATC CGG TCA GT-3’; REV 5’-TGA GGG CCC AAG ATA GAA TC-3’; 91 

bp amplicon)  in a 7900HT Real Time PCR System (Applied Biosystems). 

The thermocycling protocol consisted of 2 min incubation at 50oC followed by 

10 min incubation at 95oC. Then, the samples underwent 40 cycles of 45 secs 

each at 95oC, 56oC and 72oC. The specificity of the amplicon was verified by 

running a dissociation step.  

 

3.5 Immunohistochemical analysis 

Kidneys were excised, trimmed and fixed in 5% paraformaldehyde, 

followed by a rapid paraffin-embedding process. Tissue sections (6 μm) were 

prepared and dewaxed. Antigens were retrieved (Dako Target Retrieval 

Solution, Dako, Carpinteria, CA) by heating in a water bath set at 97oC for 20 
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mins or a digital decloaking chamber (Biocare Medical, Concord, CA) and 

treated with 3% H2O2 for 15 mins to block endogenous peroxidases. After 

blocking with 6% of the appropriate serum in 1% bovine serum albumin, the 

primary antibodies, AurA BL656 (Bethyl Labs, 1:1000), AurB ab2254 (Abcam, 

1:50) and TPX2 (H-300) sc-32863 (Santa Cruz Biotechnology, 1:40), were 

applied to the sections overnight at 4oC. Appropriate secondary antibodies 

were incubated for 1 hr at 25oC followed by 1 hr with Vector Laboratories Elite 

ABC (Burlingame, CA). As negative controls, similar tissue sections were 

incubated replacing the primary antibodies with the appropriate normal 

serum. The slides were counterstained with hematoxylin, dehydrated in 

alcohol and mounted in Permount medium (1:1 Permount:Xylene) before 

being examined under the microscope. 

 

3.6 Enrichment of amplified tumor centrosomes 

The isolation of amplified E2-induced tumor centrosomes was 

performed according to Moudjou and Bornens (Moudjou, 1994) with minor 

modifications. Primary tumors (8-10 g) from the kidney were minced and 

brought to 50 mL in culture medium containing 10 μl cytochalasin, 10 μl 

nocodazole and 50 μl protease inhibitor cocktail, all obtained from Sigma 

Aldrich (St. Louis, MO). The minced tumor was incubated for 30 mins at 4oC,  

washed and then resuspended in 0.1X TBS/8% sucrose containing 2 μl 

cytochalasin, 2 μl nocodazole and 10 μl protease inhibitor cocktail and 
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pressed through a stainless steel sieve and filtered through a 105 micron 

nylon mesh monofilament cloth (Small Parts, Inc., Miami Lakes, FL). The 

resulting cell suspension was lysed in a buffer containing 1 mM Tris-HCl pH 

8.0, 0.1% 2-mercaptoethanol, 0.5% Triton X-100 and 1X protease inhibitors, 

homogenized in a glass dounce and centrifuged at 2,500 x g for 10 mins. The 

lysate was placed in a 50 mL tube, under-laid with 60% sucrose and 

centrifuged at 10,000 x g for 30 mins. The upper 25 mL fraction was carefully 

aspirated, and the remaining sample was vortexed, over-laid onto a 

vegetable-dyed sucrose gradient (70%, 50% and 40% sucrose) and 

centrifuged at 40,000 x g for 1 hr. The gradient was fractionated [Fraction 

Collector and Econo Pump (Bio-Rad Laboratories) Fractionation System 

(Brandel, Gaithersburg, MD)] into 24 0.5 mL portions. The fraction volumes 

were brought to 1.5 mL with gradient buffer (10 mM PIPES pH 7.2, 0.1% 

Triton X-100 and 0.1% 2-mercaptoethanol), vortexed and centrifuged at 

50,000 x g for 1 hr. The supernatant was discarded and the pelleted fractions 

were stored at -80oC for further analysis by Western blotting.  

 

3.7 Immunofluorescence analysis 

Kidneys were excised and frozen in Tissue-Tek Cryo-OCT Compound 

(Andwin Scientific, Warner Cen, CA). Slides were fixed in absolute methanol 

for 10 mins at -20oC, blocked in 5% normal goat serum, 1% glycerol, 0.1% 

BSA, 0.1% fish skin gelatin, 0.1% triton X-100 and 0.4% sodium azide (10% 
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stock) and incubated with primary antibodies. The following primary 

antibodies Centrin 20H5 (Salisbury, JL, 1:1000), γ-tubulin (Sigma Aldrich, 

1:1000) and AurA (H-130) sc-25425 (Santz Cruz Biotechnology, 1:40) were 

applied to serial sections and incubated overnight at 25oC. Appropriate 

secondary antibodies conjugated with Alexa fluor 488 or 568 (Molecular 

Probes, Eugene, OR) were incubated for 1 hr at 25oC followed by a PBS 

wash. The slides were mounted with Pro Long Gold antifade reagent w/ DAPI 

(Invitrogen Corp.) and digital images recorded using a Zeiss Axiovert 

fluorescence microscope. 

 

3.8 Co-Immunoprecipitation  

Proteins were extracted as described for Western blotting. Aliquots, 

500 μg total protein, were incubated with primary antibody, p53 (PAb 240) 

ab26 (Abcam Inc.) at 4oC overnight. 50 μL of ImmunoPure Immobilized A/G 

beads (Pierce) were added to the proteins and incubated for an additional hr 

at 4oC. Immune complexes were washed 3 times in immunoprecipitation 

buffer A containing 190 mM NaCl, 50 mM Tris-HCl pH7.4, 6 mM EDTA and 

2.5% Triton X-100 and then 3 times in immunoprecipitation buffer B 

containing 150 mM NaCl, 10 mM Tris-HCl pH8.0, 5 mM EDTA and 0.1% 

Triton X-100. Proteins were released from immune complexes with 2-

mercaptoethanol at 99oC for 5 mins, separated by gel electrophoresis on 

Pierce Precise Protein Gels (Pierce) and transferred to nitrocellulose 
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membranes. Primary antibody against MDM2 (SMP14) sc-965 (Santa Cruz 

Biotechnology, 1:200) was incubated overnight at 4oC. Appropriate secondary 

antibody was incubated for 2 hrs and protein expression was visualized with 

ECL chemiluminescence (Amersham Biosciences). 

 

3.9 Statistical Analyses  

One way analysis of variance (ANOVA) with Tukey post-hoc tests were 

used for statistical evaluation, with the exception of the AurA kinase activity 

that was analyzed using student t test. Values were expressed as the mean ± 

SE. Statistical significance was assumed when p < 0.05. 
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Chapter 4: Experimental Results 
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4.1 Over-expression of AurA and B and CA in early E2-induced 

tumor foci of the Syrian hamster kidney 

4.1.1. AurA and B expression in early tumorous foci 

In order to assess the cellular location of AurA and B expression after 

various E2-treatment intervals (3.5-6.0 months) in early tumor foci, serial 

kidney sections were examined by H&E staining (Figure 7A) and 

immunohistochemistry. Analysis of whole kidney serial sections of 3.5-month 

E2-treated hamsters established that the expression of both AurA (Figure 7B) 

and B (Figure 7C) was confined essentially to cells present in early tumorous 

foci. AurA or B positive stained cells were not present in similar tumor foci 

sections in the absence of either primary antibody (Figure 7D). Positive 

stained AurA (Figure 7E) and B (Figure 7F) cells were also present in large 

well-established tumor foci derived from 6.0-month E2-treated hamsters, but 

not in adjacent non-involved epithelial kidney cells. 

   

4.1.2. Western blot analysis of Aur A and B in control and E2-

treated kidneys and E2-induced tumors of the kidney 

To determine the protein expression levels of AurA and B kinases, 

Western blot analysis of lysates from whole hamster kidney samples after 

3.0-, 4.0-, 5.0- and 6.0-months and primary tumors after 6.0-months of E2 

treatment was performed (Figure 8A). Only modest increases in AurA protein 
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were seen in early E2-treatment periods; however, a significant 8.7-fold rise 

was detected in primary tumors of the kidney (Figure 8B) when compared to 

control cholesterol-treated kidneys. A slower migrating AurA band, 

presumably the phosphorylated form of AurA, was observed only in E2-

induced tumors of the kidney. No detectable changes in AurB protein 

expression (Figure 8A) were observed after 3.0-5.0-months of E2 treatment. A 

slight rise in AurB expression was detected in 6.0-month E2-treated kidneys, 

and a significant 4.6-fold increase in primary E2-induced tumors of the kidney 

compared to age-matched cholesterol-treated control kidneys (Figure 8B). 

 

4.1.3. AurA mRNA expression in E2-induced tumors 

To determine whether the increased protein levels of AurA expression 

take place concurrently with similar increases in mRNA, real-time PCR 

analysis was performed in Syrian hamster E2-induced tumors of the kidney 

and those of 3.0- and 5.0-month E2-treated kidneys. A significant 6.0-fold 

increase in mRNA expression was observed in primary tumors of the kidney 

compared to age-matched cholesterol-treated control kidneys (Figure 9). 

 

4.1.4.  AurA activity in E2-induced tumors of the kidney 

To determine whether the over-expressed AurA protein in the E2-

induced tumors of the kidney was functionally active, a kinase assay was 
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performed using the synthetic construct, kemptide, as a substrate. The over-

expression of AurA led to a concomitant 2.6-fold increase in its kinase activity 

in E2-induced hamster tumors of the kidney relative to control cholesterol-

treated kidneys (Figure 10).  

 

4.1.5. Estrogen modulation of the expression of the Aur kinases 

in E2-induced tumors of the kidney 

In order to determine whether the protein expression of AurA and B 

was regulated by estrogen, Western blot analysis was performed in tumor 

samples from groups of 6.0-month tumor bearing animals continuously E2-

treated, after their E2 pellets were withdrawn or concomitantly treated with Tx 

for 10 days. The withdrawal/treatment period was selected because it has 

been previously shown that after a 72 h E2-withdraw period, all estrogens are 

completely cleared from the circulation of E2-treated animals (Li et al., 1994). 

Compared to age-matched control cholesterol-treated kidneys, an 8.0-fold 

rise in AurA expression was detected in all tumors receiving sustained E2 

treatment (Figure 11B). When compared to tumor-bearing hamsters 

continuously treated with E2, a 78% and a 79% reduction in AurA expression 

was observed after either a 10-day E2-withdrawal period or after E2 + Tx 

treatment, respectively. Likewise, E2-elicited AurB over-expression markedly 

declined after either E2-withdrawal (81%) or Tx (64%) co-administration. Cell 

proliferation, assessed by Ki-67 labeling, was not significantly altered in any 
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of the tumor groups (data not shown). The significant decline in AurA and B 

expression observed upon E2 withdrawal and E2 + Tx treatment, did not result 

in a concomitant reduction in the number/volume of amplified centrosomes. 

 

4.1.6. Western blot analysis of centrosome proteins in control 

and E2-treated kidneys and E2-induced tumors of the kidney 

Since centrin and γ-tubulin are ubiquitous centrosome protein 

components and markers associated with CA, their protein expression was 

determined in lysates of individual E2-treated hamster kidneys after 3.0-, 4.0-, 

5.0- and 6.0-months, and in primary tumors of the kidney after 6.0-months of 

treatment (Figure 12A). When compared to control cholesterol-treated 

hamster kidney samples, the centrin Western blot analysis of E2-induced 

tumor samples shows a clear shift in the centrin band from ~16 to 20 kDa. 

The upper band (~20 kDa), largely present in the tumors, may represent the 

phosphorylated form of centrin. The level of centrin expression was 

significantly increased (5.7-fold) in the tumor samples when compared to that 

observed in control cholesterol-treated animals (Figure 12B). The expression 

of γ-tubulin was nearly absent in the kidneys of both control and E2-treated 

animals, but showed a marked increase in expression, 70.0-fold, in tumor 

samples. A doublet was consistently observed in these samples (Figure 12B). 
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4.1.7.  CA in E2-induced tumorous foci of the Syrian hamster 

kidney 

In view of the fact that centrin and γ-tubulin are markers of centrosome 

number and volume, their expression was monitored in E2-induced tumor foci 

from 6.0-month E2-treated hamsters. Initially, the foci were detected in kidney 

serial sections by H&E staining (Figure 13A), and later, the amplified 

centrosomes were visualized by their positive staining for centrin and γ-

tubulin (Figure 13B-C). AurA was co-localized to the amplified centrosomes in 

the tumor focus (Figure 13C). The pattern of immunofluorescence staining of 

the centrosomal proteins in control cholesterol-treated kidneys (data not 

shown) and in 6.0-month E2-treated adjacent uninvolved kidney cells (Figure 

13D) was confined to the pair of centrioles apical to the nucleus. 

 

4.1.8. Localization of AurA and other centrosome proteins in 

isolated amplified centrosomes from E2-induced tumors of the kidney 

To determine whether AurA expression occurs concomitantly with CA, 

enriched amplified centrosome preparations of E2-induced tumors of the 

kidney were examined in 6.0- to 8.0-month E2-treated hamsters employing a 

discontinuous sucrose gradient fractionated into 24 aliquots (Figure 14). 

Western blot analysis of the aliquots established that the centrosome 

proteins, centrin and γ-tubulin, were expressed at high levels in fractions 8-
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10. Both proteins consistently exhibited their highest level of expression in 

fraction 9, while the intensity of their expression in other fractions was 

variable and for the most part significantly reduced. Notably, the expression of 

AurA was limited to fraction 9 confirming its distinctive association with the 

amplified tumor centrosome fraction. On the other hand, AurB expression was 

spread throughout fractions 6 to 10 (data not shown), expected of a mobile 

passenger protein. 

 

4.2 Expression of selected Aur kinase substrates in E2-induced 

tumor foci of the Syrian hamster kidney and the ACI rat mammary 

gland   

4.2.1. Tissue localization of Aur substrates in early E2-induced 

tumor foci of the kidney 

Although over 25 Aur kinase substrates have been described (Meraldi 

et al., 2004; Li and Li, 2006; Lukasiewicz, 2007), only a few commercially 

available antibodies cross react with the hamster kidney or the rat mammary 

gland. Given such limitations, centrin, histone H3, PP1 and TPX2 were 

selected to determine whether their pattern of expression follows that of 

AurA/B. Their cellular localization was assessed in serial kidney sections 

containing early tumor foci from animals treated with E2 at different time 

intervals. Sections were examined first by H&E (data not shown) and later by 
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immunohistochemistry (Figure 15A-D). Similarly to AurA, TPX2 expression 

was overwhelmingly confined to E2-induced tumor foci cells. Its level of 

expression increased along with the size of the tumor foci (Figure 15A-C). 

However, cells contained in E2-induced tumor foci, did not stain for centrin, 

histone H3 or PP1, irrespectively of the size of the foci or the length of E2 

treatment. 

 

4.2.2. Western blot analysis of Aur substrates in control and E2-

induced tumors of the kidney 

To determine whether the 8.7-fold increase in AurA protein expression 

observed in E2-induced tumors of the kidney was in tandem with similar 

increases in the expression of some of its substrates, the protein level of 

expression of non-phosphorylated and phosphorylated centrin and histone 

H3, as well as, PP1 and TPX2, was analyzed by Western blot analysis from 

control cholesterol-treated kidneys and primary tumors after 6.0-months of E2 

treatment (Figure 16A). The expression of centrin, histone H3, PP1 and TPX2 

was increased by 9.4, 11.5, 2.4 and 2.9-fold (Figure 16B), respectively, in 

primary E2-induced tumors when compared to control cholesterol-treated 

kidneys, while phospho-centrin and -histone H3 expression did not. 
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4.2.3. Estrogen modulation of the expression of Aur substrates 

non- and phosphorylated in E2-induced tumors of the kidney 

To determine whether the protein expression of non-phosphorylated 

centrin and histone H3, and their phosphorylated isoforms were regulated by 

estrogen, Western blot analysis was performed in tumor samples from groups 

of 6.0-month tumor-bearing animals that were continuously treated with E2, 

their E2 pellets withdrawn or concomitantly treated with Tx for 10 days (Figure 

17A). The expression of centrin significantly decreased 80% upon 

concomitant Tx + E2 treatment (Figure 17B). No significant changes in the 

protein expression of histone H3 and the phosphorylated forms of centrin and 

histone H3 were observed after estrogen modulation.  

  

4.2.4. Western blot analysis of Aur substrates in control and E2-

induced tumors of the mammary gland 

Similarly, to determine the protein level of expression of non- and 

phosphorylated forms of centrin and histone H3, as well as, PP1 and TPX2, 

control cholesterol-treated mammary glands and primary tumors after 6.0-

months of E2 treatment were subjected to Western blot analysis (Figure 18A). 

Expression of centrin, histone H3, PP1 and TPX2 was significantly increased 

by 2.9, 15.3, 1.8 and 2.1-fold (Figure 18B), respectively, in E2-induced 

mammary tumors when compared to control cholesterol-treated mammary 
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glands. No significant changes in the protein expression of phospho-centrin 

and -histone H3 were observed. 

 

4.2.5. Estrogen modulation of the expression of Aur substrates 

non- and phosphorylated in E2-induced tumors of the mammary gland 

In order to determine whether the protein expression of non- and 

phosphorylated forms of centrin and histone H3 were regulated by estrogen, 

Western blot analysis was performed in tumor samples from groups of 6.0-

month tumor-bearing animals continuously treated with E2, as well as in 

animals in which their E2 pellets were withdrawn or concomitantly treated with 

Tx for 8 days (Figure 19A). The expression of centrin significantly decreased 

upon E2 withdrawal or concomitant Tx + E2 treatment, 73% and 61%, 

respectively (Figure 19B). No significant changes in the protein expression of 

histone H3 and the phosphorylated forms of centrin and histone H3 were 

observed after estrogen modulation.  

 

4.2.6. Localization of Aur substrates and other centrosome 

proteins in isolated amplified centrosomes from E2-induced tumors of 

the kidney and mammary gland 

To determine whether phospho-centrin and -histone H3 expression 

occurs in parallel to CA, enriched amplified centrosome preparations of E2-
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induced tumors of the kidney and mammary gland were examined. The 

enriched centrosome fractions were obtained from 6.0- to 8.0-month treated 

hamsters (Figure 14) and from rats (data not shown) as previously described 

in section 4.1.8. Western blot analysis of the 24 fractions demonstrated that 

the expression of the phosphorylated forms of centrin and histone H3 were 

not associated with the amplified tumor centrosome fraction in either the E2-

induced tumors of the kidney or those of the mammary gland. 

 

4.3 MDM2 expression and regulation in E2-induced tumor foci of 

the Syrian hamster kidney and the ACI rat mammary gland   

4.3.1. Western blot analysis of MDM2 and p53 in control and E2-

induced tumors of the kidney 

To determine the MDM2 and p53 protein level of expression, Western 

blot analysis of lysates from control cholesterol-treated kidneys and primary 

tumors after 6.0-months of E2 treatment was performed (Figure 20A). A 

significant 8.8-fold increase in MDM2 expression was observed in primary E2-

induced tumors when compared to control cholesterol-treated kidneys (Figure 

20B). Similarly, a small, significant, 2.9-fold increase in p53 expression was 

observed in primary tumors of the kidney compared to control cholesterol-

treated kidneys (Figure 20B). 
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4.3.2. MDM2 and p53wt mRNA expression in E2-induced tumors of 

the kidney  

To determine whether E2-treatment affects the level of MDM2 and 

p53wt mRNA expression of Syrian hamster kidneys treated with E2 (3.0- and 

5.0-months) and in E2-induced tumors of the kidney, real-time PCR analysis 

was performed. No significant changes were observed in the levels of MDM2 

and p53wt mRNA expression in hamster kidneys treated with E2, however, in 

primary E2-induced tumors of the kidney, MDM2 mRNA expression exhibited 

a significant 3.5-fold increase, while p53wt levels were unchanged when 

compared to age-matched cholesterol-treated control kidneys (Figure 21).  

 

4.3.3. Estrogen modulation of MDM2 and p53 expression in E2-

induced tumors of the kidney 

In order to determine whether the protein expression of MDM2 and p53 

was regulated by estrogen, Western blot analysis was performed in tumor 

samples from groups of 6.0-month tumor bearing animals that were 

continuously E2-treated, and in similar animals in which their E2 pellets were 

withdrawn or concomitantly treated with Tx for 10 days (Figure 22A). 

Compared to age-matched control cholesterol-treated kidneys, a 13.3-fold 

rise in MDM2 expression was detected in all tumors receiving sustained E2 

treatment (Figure 22B). Upon a 10-day E2-withdrawal period, MDM2 
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expression was significantly reduced by 48% compared to that of tumors 

continuously treated with E2. Similarly, Tx co-administration resulted in a 

significant 47% decline in MDM2 expression in these tumors. In contrast, no 

change in p53 protein expression was observed after E2 pellet withdrawal or 

concomitant Tx treatment.  

 

4.3.4. Co-immunoprecipitation of MDM2 and p53wt in E2-induced 

tumors of the kidney 

To determine whether p53wt binds to MDM2 in vivo, a co-

immunoprecipitation study was performed. p53wt was immunoprecipitated 

from control cholesterol-treated kidneys and primary E2-induced kidney 

tumors and subjected to MDM2 Western blot analysis (Figure 23). A 

significant binding of p53wt to MDM2 was observed primarily in E2-induced 

tumors. 

 

4.3.5. RITA modulation of MDM2 and p53wt protein expression in 

E2-treated kidneys and E2-induced tumors of the kidney 

In order to determine whether the MDM2-p53wt interaction was 

disrupted by RITA, Western blot analysis of MDM2 and p53wt was performed 

in control cholesterol-treated kidneys and in tumor samples from groups of 

6.0-month tumor bearing animals that were continuously treated with E2 or 
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concomitantly i.p. treated with 0.75 mg or 1.0 mg RITA for 15-days. (Figure 

24A). Compared to age-matched control cholesterol-treated kidneys, an 11.7-

fold increase in MDM2 expression was detected in all tumors receiving 

sustained E2 treatment (Figure 24B). Upon concomitant RITA treatment, 

MDM2 expression was significantly increased by 13% compared to that of 

tumors continuously treated with E2. No significant increase in p53wt 

expression was detected in tumors receiving sustained E2 treatment. 

However, p53wt expression was significantly increased 64% after concomitant 

treatment with RITA compared to that of tumors continuously treated with E2 

alone.  

 

4.3.6. RITA modulation of Bax and p21 protein expression in the 

kidney 

In order to determine whether the protein expression of p53wt 

downstream targets was increased after the disruption of the MDM2-p53wt 

interaction by RITA, Western blot analysis of Bax and p21 was performed in 

control cholesterol-treated kidneys and in tumor samples from groups of 6.0-

month tumor bearing animals that were continuously treated with E2 or 

concomitantly treated with 0.75 mg or 1.0 mg RITA for 15-days (Figure 25A). 

Compared to age-matched control cholesterol-treated kidneys, a 3.4-fold 

increase in Bax expression was detected in all tumors receiving sustained E2 

treatment (Figure 25B). Upon concomitant RITA treatment, Bax expression 
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was significantly increased by 60% compared to that of tumors continuously 

treated with E2. No significant increase in p21 expression was detected in 

tumors receiving sustained E2 treatment or upon concomitant RITA treatment 

(Figure 25B).  

 

4.3.7. Western blot analysis of MDM2 and p53 in control and E2-

induced tumors of the mammary gland 

To determine the protein level of expression of MDM2 and p53, 

Western blot analysis of lysates from control cholesterol-treated mammary 

glands and primary tumors after 6.0-months of E2 treatment was performed 

(Figure 26A). A significant 7.7-fold increase in MDM2 expression was 

observed in primary tumors compared to control cholesterol-treated 

mammary glands (Figure 26B), while no significant changes in p53 protein 

expression were observed. 

 

4.3.8. MDM2 and p53wt mRNA expression in E2-induced tumors of 

the mammary gland   

Real-time PCR analysis was performed to determine the MDM2 and 

p53wt mRNA expression of ACI rat E2-induced tumors of the mammary gland 

and mammary glands treated with E2 for 3.0- and 5.0-months. MDM2 mRNA 

showed a significant 4.1-fold increase in primary tumors of the mammary 
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gland compared to age-matched cholesterol-treated control mammary glands 

(Figure 27). No significant changes in p53wt mRNA expression were observed 

in primary E2-induced tumors of the mammary gland. 

 

4.3.9. Estrogen modulation of the expression of MDM2 and p53 in 

E2-induced tumors of the mammary gland 

In order to determine whether the protein expression of MDM2 and p53 

is regulated by estrogen, Western blot analysis was performed in tumor 

samples from groups of 6.0-month tumor bearing animals that were either 

continuously E2-treated or had their E2 pellet withdrawn or concomitantly 

treated with Tx for 8 days (Figure 28A). Compared to age-matched control 

cholesterol-treated mammary glands, a 6.8-fold rise in MDM2 expression was 

detected in all tumors receiving sustained E2 treatment (Figure 28B). Upon an 

8-day E2-withdrawal period, MDM2 expression was significantly reduced by 

66% compared to that of tumors continuously treated with E2. Similarly, Tx co-

administration resulted in a significant 46% decline in MDM2 expression in 

these tumors. In contrast, no change in p53 protein expression was observed 

after E2 pellet withdrawal or concomitant Tx treatment.  
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4.3.10. Co-immunoprecipitation of MDM2 and p53wt in E2-induced 

tumors of the mammary gland 

A co-immunoprecipitation study was performed to determine whether 

p53wt binds to MDM2 in vivo. p53wt was immunoprecipitated from control 

cholesterol-treated mammary glands and primary E2-induced mammary gland 

tumors and subjected to MDM2 Western blot analysis (Figure 29). As in the 

E2-induced tumors of the kidney, p53wt binds to MDM2 in E2-induced 

mammary tumors.
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Figure 7. Immunostaining of AurA and B in Syrian hamster E2-

induced early tumor foci of the kidney 

Representative kidney serial sections from 3.5-month treated hamster 

kidneys: A. H&E staining showing a small tumor focus. The cells present in 

the tumor foci were AurA (B) and B (C) positive. D. A negative control kidney 

serial section without primary antibodies. Representative kidney serial 

sections from 6-month treated hamster kidneys: AurA (E) and B (F) positive 

stained cells were confined to the E2-induced tumor foci. Magnification: 40X. 
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Figure 8. Effect of estrogen treatment on the protein expression of 

AurA and B in the Syrian hamster kidney 

A. No significant changes in the expression of AurA were observed in either 

cholesterol-treated control (C) or in E2-treated kidney samples after 3 (E3), 4 

(E4) and 5-months (E5) E2-treatment. After 6 months of E2 treatment (E6), 

there was a slight increase in AurA expression followed by a marked rise in 

E2-induced tumors (T). A doublet was present in the tumor samples which 

may represent the native and phosphorylated forms of AurA. AurB expression 

was detected only in T samples. GAPDH was used as a loading control. B. In 

T samples, the expression of AurA and B were significantly increased, 8.7- 

and 4.6-fold, respectively, as compared to C kidney samples. Data represent 

the mean ± SE, n=6. Statistical significance was determined by one way 

ANOVA with a Tukey post hoc test, ** p < 0.001 vs C. 

   



76  

 



77  

Figure 9. Effect of estrogen treatment in the mRNA expression of 

AurA by real-time PCR in the Syrian hamster kidney 

AurA mRNA levels were analyzed by real-time PCR from Syrian hamster 

kidneys treated with cholesterol (C), E2 for 3 (E3) or 5 (E5) months and E2-

induced kidney tumors (T). A significant 6.0-fold increase was detected in T 

samples compared to C samples. Data represent the mean ± SE, n=6. 

Statistical significance was determined by one way ANOVA with a Tukey post 

hoc test, ** p < 0.001 vs C, E3 and E5. 
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Figure 10. Effect of estrogen treatment on AurA kinase activity in the 

Syrian hamster kidney and in E2-induced tumors of the kidney 

A significant 2.6-fold increase in AurA kinase activity was observed in E2-

induced hamster tumors of the kidney (T) when compared to cholesterol-

treated control (C) hamster kidneys, t-test, * p < 0.05 vs C, n=6.
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Figure 11. Estrogen modulation of Aur kinase protein expression in 

the Syrian hamster E2-induced tumors of the kidney 

A. A significant decline in AurA and B expression was observed after the E2 

10-day withdrawal period (T-Eout), 78 and 81% respectively, and after 

concomitant treatment with Tx (T-tam), 79 and 64% respectively (B). GAPDH 

was used as a loading control. Data represent the mean ± SE, n=3/group. 

Statistical significance was determined by one way ANOVA with a Tukey post 

hoc test, ** p < 0.001 vs C, ♠ p < 0.05 vs T. 
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Figure 12. Effect of estrogen treatment in the protein expression of 

centrin and γ-tubulin in the Syrian hamster kidney and in E2-induced 

tumors of the kidney 

A. A clear shift in the centrin band was observed among control cholesterol-

treated (C) and E2-treated kidneys for 3 (E3), 4 (E4), 5 (E5) or 6 (E6) months 

and in E2-induced tumor samples (T). The tumor upper band present may 

represent the phosphorylated form of centrin. γ-tubulin expression was very 

low in both C and in E2-treated animals, but showed a marked increase in 

expression in the T samples. A doublet was consistently observed in these 

samples. GAPDH was used as a loading control. B. T samples showed a 

significant 5.7-fold increase in centrin and a 70.0-fold increase in γ-tubulin 

expression when compared to C samples. Data represent the mean ± SE, 

n=3/group. Statistical significance was determined by one way ANOVA with a 

Tukey post hoc test, ** p < 0.001 vs C. 
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Figure 13. Effect of E2 in centrosome number and size in Syrian 

hamster tumor foci of the kidney 

Centrosomes and nuclei were observed by fluorescent microscopy of serial 

sections labeled with antibodies against centrin 20H5, γ-tubulin, AurA and 

DAPI (blue) (B-D) following a corresponding 6-month E2-induced tumor foci 

area stained for H&E (A). In the tumor foci, centrosome amplification in size 

and number was evident (B). AurA co-localizes to the amplified centrosomes 

(C). Numerous centrosomes were much larger and often more numerous 

than those centrosomes in adjacent, uninvolved tissue (D). 
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Figure 14. Localization of AurA and centrosome proteins, γ-tubulin 

and centrin, to isolated centrosome fractions of Syrian hamster E2-

induced tumors of the kidney 

Centrosome isolation fractions from a combined sample of E2-induced kidney 

tumors depicting the presence of AurA, γ-tubulin and centrin. Note that the 

AurA expression peak is located in fraction 9, where a major peak for γ-

tubulin and centrin expression is also present.
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Figure 15. Effect of estrogen treatment on the protein expression of 

TPX2 in Syrian hamster tumor foci of the kidney 

The number of positive cells stained for TPX2 increased upon estrogen 

treatment. A. A small tumor focus from a 4.0-month E2-treated kidney. B. An 

intermediate tumor focus from a 6.0-month E2-treated kidney. C. A large 

tumor focus from a 6.0-month E2-treated kidney. D. Kidney serial section 

without primary antibody. 
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Figure 16. Protein expression of centrin, histone H3, PP1 and TPX2 in 

Syrian hamster E2-induced tumors of the kidney 

Western blot analysis (A) revealed that the expression of centrin, histone H3, 

PP1 and TPX2 expression was markedly increased (B), 9.4, 11.5, 2.4 and 

2.9-fold, respectively, in E2-induced tumors (T) when compared to control 

cholesterol-treated samples (C). GAPDH was used as a loading control. Data 

represent the mean ± SE, n=3. Statistical significance was determined by one 

way ANOVA with a Tukey post hoc test, ** p < 0.001 vs C, * p < 0.05 vs C. 
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Figure 17. Estrogen modulation of the protein expression of centrin 

and histone H3 in Syrian hamster E2-induced tumors of the kidney 

A. The protein expression of centrin and histone H3 was determined in 6-

month age-matched kidney samples from control cholesterol-treated animals 

(C) and in tumors from animals continuously treated with E2 (T), after a 10-

day E2 withdrawal (T-Eout) and after a 10-day concomitant Tx (T-tam) 

treatment period. B. A significant 80% decline in centrin expression was 

observed after 10-day concomitant treatment with Tx. No significant changes 

in histone H3 protein expression were observed after estrogen modulation. 

GAPDH was used as a loading control. Data represent the mean ± SE, 

n=3/group. Statistical significance was determined by one way ANOVA with a 

Tukey post hoc test, * p < 0.05 vs C, ♠ p < 0.05 vs T. 
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Figure 18. Protein expression of centrin, histone H3, PP1 and TPX2 in 

ACI rat mammary glands and in E2-induced mammary tumors 

A. The expression of centrin, histone H3, PP1 and TPX2 was significantly 

increased, 2.9, 15.3, 1.8 and 2.1-fold, respectively, in E2-induced tumors (T) 

when compared to control cholesterol-treated (C) samples (B). β-actin was 

used as a loading control. Data represent the mean ± SE, n=3. Statistical 

significance was determined by one way ANOVA with a Tukey post hoc test, * 

p < 0.05 vs C. 



96  

 

 



97  

Figure 19. Estrogen modulation of the protein expression of centrin 

and histone H3 in ACI rat mammary glands and in E2-induced mammary 

tumors 

A. The expression of centrin and histone H3 was determined after 6-month 

cholesterol-treatment (C) and in E2-induced tumors from animals continuously 

treated with E2 (T), after an 8-day E2-withdrawal period (T-Eout) and after an 

8-day concomitant Tx treatment (T-tam). β-actin was used as a loading 

control. A significant decline in centrin expression was observed after either 

an 8-day E2-withdrawal period or after 8-days of concomitant Tx treatment, 

73% and 61%, respectively (B). No significant changes in histone H3 protein 

expression were observed after estrogen modulation. Β-actin was used as a 

loading control. Data represent the mean ± SE, n=3/group. Statistical 

significance was determined by one way ANOVA with a Tukey post hoc test, 

** p < 0.001 vs C, * p < 0.05 vs C, ♠ p < 0.05 vs T. 
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Figure 20. Effect of estrogen treatment in the protein expression of 

MDM2 and p53 in the Syrian hamster kidney and in E2-induced tumors of 

the kidney 

A. The expression of MDM2 was low in samples from cholesterol-treated 

controls (C), however, MDM2 and p53 expression was significantly increased, 

8.8- and 2.9-fold, respectively, in E2-induced tumors (T) when compared to C 

samples (B). GAPDH was used as a loading control. Data represent the 

mean ± SE, n=6. Statistical significance was determined by one way ANOVA 

with a Tukey post hoc test, ** p < 0.001 vs C.
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Figure 21. Effect of E2 in the mRNA expression of MDM2 and p53wt, 

measured by real-time PCR, in the Syrian hamster kidney 

In E2-induced tumors of the kidney (T), a significant 3.5-fold increase in 

mRNA MDM2 expression was detected, but no significant changes were 

observed in p53wt expression when compared to cholesterol-treated control 

samples (C). In addition, no significant changes in the expression of MDM2 or 

p53wt were observed in either 3- (E3) or 5-month (E5) E2-treated kidney 

samples. Data represent the mean ± SE, n=6. Statistical significance was 

determined by one way ANOVA with a Tukey post hoc test, * p < 0.05 vs C, 

E3 and E5. 
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Figure 22. Estrogen modulation of the protein expression of MDM2 

and p53 in Syrian hamster E2-induced tumors of the kidney 

A. A significant decline, 48 and 47%, in MDM2 protein expression was 

observed in E2-induced tumors of the kidney after a 10-day withdrawal period 

of E2 (T-Eout) and after concomitant treatment with Tx (T-tam), respectively 

(B). No significant changes in p53 protein expression were observed after 

estrogen modulation. GAPDH was used as a loading control. Data represent 

the mean ± SE, n=3/group. Statistical significance was determined by one 

way ANOVA with a Tukey post hoc test, ** p < 0.001 vs C, ♠ p < 0.05 vs T.
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Figure 23. Binding of p53wt and MDM2 in Syrian hamster kidneys and 

in E2-induced tumors of the kidney 

p53wt was immunoprecipitated from Syrian hamster kidneys treated with 

cholesterol (HKC) and E2-induced kidney tumors (HKT) and subjected to 

Western blot analysis for the presence of MDM2. 
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Figure 24. Effect of the MDM2 inhibitor RITA on the protein expression 

of MDM2 and p53 in Syrian hamster kidneys and in E2-induced tumors of 

the kidney 

A. A significant increase in MDM2 and p53 expression, 13 and 64%, 

respectively (B), was observed after a 15-day concomitant treatment period 

with 0.75 mg (T+0.75mg RITA) or 1.0 mg RITA (T+1.0mg RITA). GAPDH was 

used as a loading control. Data represent the mean ± SE, n=4. Statistical 

significance was determined by one way ANOVA with a Tukey post hoc test, 

*p < 0.05 vs C, ♦p < 0.05 vs T.  
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Figure 25. Effect of the MDM2 inhibitor RITA on the protein expression 

of Bax and p21 in Syrian hamster kidneys and in E2-induced tumors of 

the kidney  

A. A significant increase in the expression of Bax, 60% (B), was observed 

after a 15-day concomitant treatment of 0.75 mg (T+0.75mg RITA) or 1.0 mg 

RITA (T+1.0mg RITA). No significant increase in p21 expression was 

observed after concomitant RITA treatment. GAPDH was used as a loading 

control. Data represent the mean ± SE, n=4. Statistical significance was 

determined by one way ANOVA with a Tukey post hoc test, *p < 0.05 vs C, ♦p 

< 0.05 vs T.  
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Figure 26. Protein expression of MDM2 and p53 in ACI rat mammary 

glands and in E2-induced mammary tumors 

MDM2 expression was markedly increased, 7.7-fold (B), in E2-induced tumors 

(T), when compared to control cholesterol-treated mammary gland samples 

(C), while p53 expression was very low and only detected in T samples. β-

actin was used as a loading control. Data represent the mean ± SE, n=6. 

Statistical significance was determined by one way ANOVA with a Tukey post 

hoc test, * p < 0.05 vs C.
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Figure 27. mRNA expression of MDM2 and p53wt, measured by real-

time PCR, in ACI rat mammary glands and E2-induced mammary tumors 

A significant 4.1-fold increase in MDM2 mRNA expression was detected in 

E2-induced tumor samples (T) compared with cholesterol-treated control 

samples (C), while no significant changes were detected in p53wt. In addition, 

no significant changes in the expression of MDM2 or p53wt were observed in 

either 3- (E3) or 5-month (E5) E2-treated kidney samples. Data represent the 

mean ± SE, n=6. Statistical significance was determined by one way ANOVA 

with a Tukey post hoc test, ** p < 0.001 vs C, E3 and E5. 
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Figure 28. Estrogen modulation of MDM2 and p53 protein expression 

in ACI rat mammary glands and in E2-induced mammary tumors 

A. A significant decline, 66 and 46%, respectively (B), in MDM2 expression 

was observed in E2-induced mammary tumors after an 8-day withdrawal 

period of E2 (T-Eout) and after concomitant treatment with Tx (T-tam). No 

significant changes in p53 protein expression were observed after estrogen 

modulation. β-actin was used as a loading control. Data represent the mean ± 

SE, n=3/group. Statistical significance was determined by one way ANOVA 

with a Tukey post hoc test, * p < 0.05 vs C, ♠ p < 0.05 vs T. 
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Figure 29. p53wt and MDM2 binding in ACI rat mammary glands and in 

E2-induced mammary tumors 

p53wt was immunoprecipitated from ACI rat mammary glands treated with 

cholesterol (MGC) and from E2-induced mammary gland tumors (MGT) and 

subjected to Western blot analysis for the presence of MDM2.
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Chapter 5: Discussion 
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5.1 General Discussion 

CIN and aneuploidy are defining features of human sporadic BC. 

Almost a century ago, Boveri proposed that aneuploidy in cancer cells may 

arise through errors in chromosome segregation due to centrosome defects 

(Boveri, 1914). CA has been correlated with CIN and aneuploidy as defining 

features of human BC (Makris et al., 1997; Lingle et al., 1998; Arnerlov et al., 

2001) as well as in E2-induced tumors of the ACI rat mammary gland (Li et al., 

2002a; Li et al., 2004) and the Syrian hamster tumors of the kidney (Li and Li, 

2003; Hontz et al., 2007). Additionally, these defining features of estrogen-

induced oncogenesis have been causally linked to the over-expression of the 

mitotic kinase, AurA in human BC (Katayama et al., 2003) and in E2-induced 

tumors (Li et al., 2004; Hontz et al., 2007). 

The G1/S and G2/M checkpoints act through the tumor suppressor p53 

to ensure the orderly progression of the cell cycle. In some malignant tumors 

a p53wt mutation has been correlated with CA (Weber et al., 1998; Carroll et 

al., 1999; Ouyang et al., 2001; Jeng et al., 2004; Zhu et al., 2005). In BC 

tumors that retain p53wt, MDM2 over-expression is often observed in 

synchrony with CA (Carroll et al., 1999). MDM2 over-expression results in the 

degradation of p53wt and the loss of function which is enhanced by its 

phosphorylation by AurA (Katayama et al., 2004).  

For the first time, in the current study, the data demonstrate a link 

between the estrogen-induced over-expression of the oncoproteins AurA and 
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MDM2 and the molecular cascade of CA, CIN and aneuploidy observed in the 

E2-induced Syrian hamster tumors of the kidney. Based on these results and 

similar previous reports in both human BC and the ACI rat, a correlative 

sequence of events is proposed for E2-induced oncogenesis beginning with 

E2 interacting with its receptor, ERα, leading to the subsequent over-

expression of AurA and MDM2, CA, CIN, aneuploidy and eventual neoplastic 

transformation (Figure 30). These early molecular and cellular changes during 

E2-induced oncogenesis may provide new novel targets for the prevention 

and therapeutic intervention of human sporadic BC. 
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Figure 30. Schematic representation of the proposed pathway of 

events leading to neoplastic transformation during E2-induced 

oncogenesis  

E2, acting through ERα, results in the sustained over-expression of AurA and 

MDM2. Over-expressed AurA leads to CA through the deregulated 

phosphorylation of its centrosomal protein substrates. Over-expressed MDM2 

leads to CA through the loss of function of p53wt. Loss of function of p53wt can 

be enhanced by AurA phosphorylation of p53wt. CA leads to the development 

of CIN, aneuploidy and eventual BC. 
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5.2 Overall Conclusions 

AurA and B expression 

The Auroras are a family of mitotic kinases essential for the proper 

execution of various mitotic events including: centrosome duplication, 

maturation and separation, spindle assembly and stability, chromosome 

duplication and segregation and cytokinesis (Carmena and Earnshaw, 2003; 

Katayama et al., 2003).  

The over-expression of AurA and B in the early tumor foci of the Syrian 

hamster kidney is in agreement with previously published reports showing 

AurA over-expression in E2-induced tumors of the ACI rat mammary gland (Li 

et al., 2004) and in human BC (~94%) (Tanaka et al., 1999). The over-

expressed AurA in the E2-induced tumors shows the presence of a doublet 

which may represent the native and phosphorylated forms of AurA.  

IHC analysis of these E2-induced tumors showed that their expression 

was confined to cells present in tumor foci. Positively stained cells were 

observed as early as 3.5 months of E2 treatment suggesting that the AurA 

and B over-expression is an early event, that can only be observed by IHC, 

as these small early foci are probably diluted during the processing of whole 

tissue lysates for Western blot anaylsis.  

CA, monitored by the over-expression of centrin and γ-tubulin, was 

observed in concert with AurA and B over-expression in E2-induced tumors of 

the Syrian hamster kidney, as well as in similarly induced tumors of the ACI 
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rat mammary gland (Li et al., 2004). In the hamster kidney model, the over-

expressed centrin showed a clear shift in the centrin band between 

cholesterol-treated control and E2-treated animals and E2-induced tumor 

samples. A doublet was also present in γ-tubulin expression E2-induced 

tumors of the kidney similar to differential phosphorylation states reported in 

E2-induced ACI rat mammary gland tumors (Li et al., 2004) and non-

mammalian species (Oakley and Oakley, 1989; Lajoie-Mazenc et al., 1996). 

AurA expression was associated with an amplified tumor centrosome fraction 

isolated from a combined sample of E2-induced tumors of the kidney. 

Additionally, AurA co-localized to amplified centrosomes in E2-induced tumor 

foci as identified by immunofluorescence. The over-expression of the Aur 

kinases, specifically AurA, is consistent with the postulation of its involvement 

in eliciting CA (Zhou et al., 1998).  

The discovery that AurA and B are persistently over-expressed in early 

tumorous foci of the kidney and AurA in mammary dysplasias and DCIS in 

female ACI rats (Li et al., 2004), both induced by E2, suggests that these 

kinases may be under direct or indirect estrogen control. This is now 

supported by our finding that AurA protein expression showed a marked 

decline in tumors upon E2 withdrawal or after the co-administration of Tx in 

the presence of E2 as compared with corresponding tumors maintained on E2 

alone. The relatively brief period of E2 withdrawal or E2 plus Tx co-

administration did not result in a decrease of CA. This result was not 
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unexpected as centrosomes are complex structures, containing the relatively 

stable proteins centrin and γ-tubulin, which likely require many cell cycles to 

be depleted from the centrosome structure. 

In the hamster kidney model, AurA mRNA was over-expressed 6.0-fold 

in E2-induced tumors of the kidney compared with age-matched cholesterol-

treated control kidneys. These data are consistent with elevated AurA mRNA 

levels reported in E2-induced tumors of the ACI rat (Li et al., 2004) and 

human BC (~62%) (Miyoshi et al., 2001). In addition, over-expressed AurA 

led to a concomitant increase in AurA kinase activity in E2-induced tumors of 

the kidney compared with age-matched cholesterol-treated control kidneys. 

The over-expression of active AurA kinase has the ability to transform 

NIH3T3 cells and induce tumor formation when implanted in nude mice, thus 

supporting the role of AurA as an oncoprotein (Bischoff et al., 1998; Zhou et 

al., 1998).  

Persistant over-expression of AurA and B has been associated with 

CA, CIN and aneuploidy (Carmena and Earnshaw, 2003; Katayama et al., 

2003; Li et al., 2004; Fu et al., 2007), key molecular changes observed during 

oncogenesis. Previous work in our lab has established CIN and aneuploidy as 

early events in solely E2-induced tumors of the hamster kidney (Li et al., 1999; 

Li et al., 2001; Papa et al., 2003), and in the E2-induced ACI rat mammary 

tumor model. These traits have been detected in 55-78% of human DCISs 

and 85-92% of human IDBCs (Makris et al., 1997; Arnerlov et al., 2001; Li et 
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al., 2002a). Similarly, CA, CIN and aneuploidy have been reported in 84% 

and 91% of E2-induced rat mammary DCISs and primary mammary tumors 

(Li et al., 2002a), respectively. While the precise relationship between 

sustained AurA and B over-expression and CA leading to CIN and aneuploidy 

has yet to be defined, there is growing correlative evidence that these 

characteristics occur early and therefore, may be important molecular 

alterations representing a common early pathway in E2-driven neoplastic 

transformation, rather than a consequence of tumor progression.  

 

Aur kinase substrates 

CA, detected in nearly all cancers, has long been implicated as a 

cause of CIN and aneuploidy leading to neoplastic transformation (Boveri, 

1914; Lingle et al., 1998; Pihan et al., 2001). However, the mechanism by 

which CA occurs is not well understood. The two prevailing views are that CA 

arises from either cell division failure or a disruption of the centriole 

duplication cycle (Nigg, 2002; Duensing et al., 2007). In combination, AurA 

and B phosphorylate more than 25 currently known centrosomal and mitotic 

protein substrates (Li and Li, 2006). The phosphorylation of any individual or 

combination of these substrates might affect the deregulation of the 

centrosome cycle leading to CA and downstream molecular changes leading 

to tumor formation. The data show that four of these Aur substrates, centrin, 
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histone H3, PP1 and TPX2, are over-expressed in the Syrian hamster tumor 

foci of the kidney and the ACI rat mammary gland.  

Centrin is a calcium binding protein that is required for centriole 

duplication and is one of the first proteins to localize at sites of newly forming 

centrioles (Salisbury, 2007). Centrin and AurA expression overlap throughout 

the cell cycle and in vitro kinase assays demonstrated the ability of AurA to 

phosphorylate centrin (Lukasiewicz, 2007). In addition, over-expression of 

AurA in HeLa cells led to increased levels of phospho-centrin suggesting that 

this phosphorylation has a stabilizing effect on the expression of centrin 

(Lukasiewicz, 2007). Therefore, we can speculate that the over-expression of 

centrin we are observing may be due to phosphorylation by AurA. This 

stabilizing phosphorylation may be contributing to the CA observed in the 

Syrian hamster tumors of the kidney and ACI rat mammary gland by 

interfering with proper centriole/centrosome duplication.  

Chromatin condensation is essential for cell division in eukaryotes. 

Phosphorylation of histone H3 is considered to be a crucial event required for 

chromatin condensation and cell cycle progression (Hans and Dimitrov, 

2001). Studies indicate that both AurA and B have the ability to effectively 

phosphorylate histone H3 at Ser-10 in vitro and in vivo (Crosio et al., 2002). 

The over-expression of the Aur kinases may be leading to the constituitive 

phosphorylation of histone H3 and accelerated progression through the cell 

cycle thus increasing proliferation, as reported for hepatocellular carcinoma 
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(Sistayanarain et al., 2006). The link between increased histone H3 

phosphorylation and CA remains elusive. The stages of centrosome 

duplication are tightly linked with the cell cycle. Therefore, one effect of cell 

cycle deregulation, via the over-expression of histone H3, could be the 

accumulation of centrosome defects in the cell and eventual CA.  

The current results showed that both centrin and histone H3 were 

over-expressed at the protein level in E2-induced Syrian hamster tumors of 

the kidney and the ACI rat mammary gland, however, we were unable to 

determine the differential expression of phospho-centrin and -histone H3 

during E2-induced oncogenesis due to the use of unstable and unpredictable 

phospho-antibodies. Additionally, our attempts to localize phospho-centrin 

and -histone H3 in isolated amplified tumor centrosomes were unsuccessful, 

presumably due to the lack of reliable phospho-antibodies. Nevertheless, we 

were able to show a decline in centrin protein expression in tumors upon E2 

withdrawal or the co-administration of Tx in the presence of E2 as compared 

with corresponding tumors maintained on E2 alone, suggesting that centrin is 

under direct or indirect estrogen control. In contrast, we observed no 

significant changes in histone H3 protein expression upon E2 withdrawal or 

the co-administration of Tx in the presence of E2 as compared with 

corresponding tumors maintained on E2 alone.  

Further, we examined the expression of PP1 and TPX2, proteins that 

interact with AurA as both regulators and substrates. Their roles in the 
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regulation of AurA have been well defined with TPX2 as an activator (Eyers 

and Maller, 2004) and PP1 as an inhibitor of AurA kinase activity (Satinover et 

al., 2004). The roles of PP1 and TPX2 as substrates of AurA are not as clear. 

Upon phosphorylation by AurA, the phosphatase activity of PP1 is reduced 

(Katayama et al., 2001) and TPX2 is believed to play a crucial role in the 

localization of AurA to the spindle microtubules (Kufer et al., 2002). TPX2 is 

required for spindle pole formation, and it has been reported that altering 

TPX2, either by depletion or over-expression, leads to a failure in spindle 

assembly (Gruss et al., 2002). 

The results show that both PP1 and TPX2 show an increase in protein 

expression in E2-induced tumors of the Syrian hamster kidney and the ACI rat 

mammary gland. The importance of these results, while interesting, remains 

unclear in the absence of phospho-antibody data. In addition, TPX2 primarily 

localizes to the cells in the tumor foci. The localization of TPX2, shortly after 

4.0-months of E2 treatment, suggests its involvement during early stages of 

tumor development.  

These results, while preliminary, suggest that these four Aur substrates 

may prove to be important players in eliciting the alterations observed during 

early stages of E2-induced oncogenesis. However, the roles of these 

substrates will only be clearly defined when improved and stable phospho-

antibodies are developed. Thus, the significance of the over-expression of 
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these Aur substrates during E2-induced oncogenesis, and their role in CA and 

eventual neoplastic transformation remains elusive. 

 

MDM2-p53 

The G1/S and G2/M cell cycle checkpoints, that normally ensure the 

orderly progression of cell cycle events, can be inactivated during 

oncogenesis (Hartwell and Weinert, 1989). In normal cells, DNA damage 

triggers checkpoint activation through the tumor suppressor p53 and up-

regulation of its downstream targets. Mutations in p53 are common in many 

human tumors (~50%) (Caron de Fromentel and Soussi, 1992; Greenblatt et 

al., 1994) leading to a loss of its tumor suppressor properties. However, p53 

mutations in BC are less common (~20%) (Pharoah et al., 1999; Gasco et al., 

2002; Lacroix et al., 2006). In tumors that retain p53wt, like BC, p53 

inactivation occurs mainly through the deregulation and over-expression of 

MDM2 (Oliner et al., 1992; Finlay, 1993). Our results show a marked increase 

in MDM2 protein and mRNA expression in E2-induced Syrian hamster tumors 

of the kidney and in ACI rat mammary gland tumors, providing additional 

evidence that the inactivation of p53wt through MDM2 over-expression may be 

a common pathway in estrogen-driven oncogenesis.  

MDM2 is regulated by p53 through a p53 binding site present in the 

MDM2 gene (Wu et al., 1993). In addition to p53 regulation, the expression of 

ERα has been shown to induce MDM2 transcription (Phelps et al., 2003). In 
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ERα+ BC tumors, MDM2 gene amplification is uncommon, although MDM2 

mRNA and protein levels are often increased, 73 and 71%, respectively 

(Marchetti et al., 1995; Bueso-Ramos et al., 1996; Turbin et al., 2006). 

Additionally, in MCF-7 cells, mitogen stimulation, such as E2, induced 

elevated expression of MDM2 (D'Assoro et al., 2008). These results suggest 

that MDM2 expression is under estrogen direct or indirect control as 

supported by our finding that upon E2 withdrawal or the co-administration of 

Tx in the presence of E2, MDM2 protein expression was markedly decreased 

in these tumors as compared with tumors maintained on E2 alone.  

Binding studies of MDM2 oncoprotein and p53 provided evidence that 

the bound p53 is wild type and not mutated in E2-induced Syrian hamster 

tumors of the kidney and in the ACI rat mammary gland. The binding of over-

expressed MDM2 oncoprotein to p53wt facilitates the degradation of p53wt via 

ubiquitin ligase and the proteasome, contributing to the CA, CIN and 

aneuploidy seen in E2-induced Syrian hamster tumors of the kidney and the 

ACI rat breast. Human breast DCISs exhibit a high frequency of CA (Lingle et 

al., 1998; Carroll et al., 1999; Lingle et al., 2002). In tumors that retain p53wt, 

high levels of MDM2 were also observed (Carroll et al., 1999). Similarly, over-

expression of MDM2 in Swiss 3T3 cells (Carroll et al., 1999) and E2 

stimulation of MDM2 expression in MCF-7 cells (p53wt) (D'Assoro et al., 2008) 

resulted in CA and CIN. These results suggest that MDM2 over-expression, 

resulting in a loss of p53wt, commonly results in CA. 
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In addition, the phosphorylation of p53wt by the oncoprotein AurA at 

serine 315 makes it more susceptible to ubiquitination by MDM2 and 

proteolysis (Katayama et al., 2004). AurA also phosphorylates p53wt at serine 

215 which abrogates its function. This phosphorylation inhibits p53wt DNA 

binding and transcriptional activation leading to an AurA override causing cell 

cycle progression, survival and transformation (Liu et al., 2004). Previously, 

we have shown over-expression of AurA and its link to CA, CIN and 

aneuploidy in the E2-induced Syrian hamster tumors of the kidney (Hontz et 

al., 2007) and the ACI rat mammary gland (Li et al., 2004). Interestingly, both 

the over-expression of AurA and loss of p53wt function via MDM2 over-

expression lead to a similar molecular cascade of CA, CIN and aneuploidy.  

Disrupting the MDM2-p53wt interaction during oncogenesis is of vital 

importance for reactivating p53wt and restoring its tumor suppressor function. 

The small molecule inhibitor RITA prevents the MDM2-p53 interaction in vitro 

and in vivo and displays anti-tumor activity without significant adverse effects 

(Issaeva et al., 2004). RITA functions by binding to p53, inhibiting the MDM2-

p53 binding leading to p53 inactivation. Treatment of tumor-bearing animals 

with RITA led to a significant increase in p53wt and a corresponding increase 

in p53 downstream targets, MDM2 and Bax. In contrast, no significant 

changes were observed in p21 protein expression after RITA treatment. 

Previous reports show that treatment with RITA correlates with increased 

expression of MDM2 in a p53wt dependent manner (Issaeva et al., 2004). 
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Additionally, p53 restoration in murine leukemia cells lacking p53 led to a 

correlated increase in Bax mRNA and protein levels (Miyashita et al., 1994a; 

Miyashita et al., 1994b; Selvakumaran et al., 1994). While Bax leads to 

apoptosis and a cytotoxic cell response, p21 leads to cell cycle arrest and a 

cytostatic cell response. Previous studies showed a decreased binding of p53 

to p300 which can activate p53 by acetylation (Issaeva et al., 2004). 

Additionally, previous studies in HCT116 cells show that disruption of the p53-

p300 interaction leads to a failure of p21 activation which then favors 

apoptosis over cell cycle arrest (Iyer et al., 2004). Our results suggest that 

RITA is leading to an apoptotic response in the damaged tumor cells via p53 

stimulation of Bax. Therefore, previous RITA studies, which showed an 

induction of apoptosis mediated by p53wt using TUNEL assays (Issaeva et al., 

2004), are in support of our current findings. 

Our findings suggest that RITA can directly inhibit the MDM2 mediated 

inactivation of p53wt observed during estrogen-induced oncogenesis. If used 

as an early intervention, before significant oncoprotein and chromosomal 

changes, RITA may maintain p53wt function, thus potentially inhibiting CA, 

CIN and transformation.  

 

5.3 Future Directions 

Future directions should include further study of the regulation of AurA 

and MDM2 by estrogens, the study of Aur kinase substrates as better 
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antibodies, both non- and phosphorylated, become commercially available, 

the study of additional mitotic kinases involved in oncogenesis, like PLK1, and 

their possible roles in E2-driven oncogenesis and further refinements in the 

targeting of specific entities, AurA and MDM2, with small molecule inhibitors. 

The ultimate goal of these studies was to identify early molecular and 

cellular changes during E2-induced oncogenesis that could provide new novel 

targets for the prevention and therapeutic intervention of human sporadic BC. 

The over-expression of the two oncoproteins AurA and MDM2 seemed likely 

initial starting points. Preliminary studies from our lab using the Aur kinase 

small molecule inhibitor MK-0457 (originally known as VX-680) in the ACI rat 

showed that while tumor incidence was unaffected, tumor multiplicity and size 

were significantly reduced (~60%) (Li S.A., 2008). In addition, preliminary 

studies in the Syrian hamster show that RITA has the ability to restore 

endogenous p53wt function. Both results, while preliminary, represent initial 

steps in the chemoprevention of E2-driven oncogenesis targeting specific 

entities. The over-expression of AurA and MDM2 appear to be early events 

during oncogenesis. Therefore, early intervention could hold the promise to 

effective tumor prevention by blocking the cascade of CA, CIN and 

aneuploidy. 
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