105 research outputs found
Prediction of Response to Temozolomide in Low-Grade Glioma Patients Based on Tumor Size Dynamics and Genetic Characteristics
International audienceBoth molecular profiling of tumors and longitudinal tumor size data modeling are relevant strategies to predict cancer patients' response to treatment. Herein we propose a model of tumor growth inhibition integrating a tumor's genetic characteristics (p53 mutation and 1p/19q codeletion) that successfully describes the time course of tumor size in patients with low-grade gliomas treated with first-line temozolomide chemotherapy. The model captures potential tumor progression under chemotherapy by accounting for the emergence of tissue resistance to treatment following prolonged exposure to temozolomide. Using information on individual tumors' genetic characteristics, in addition to early tumor size measurements, the model was able to predict the duration and magnitude of response, especially in those patients in whom repeated assessment of tumor response was obtained during the first 3 months of treatment. Combining longitudinal tumor size quantitative modeling with a tumor''s genetic characterization appears as a promising strategy to personalize treatments in patients with low-grade gliomas. WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? þ First-line temozolomide is frequently used to treat low-grade gliomas (LGG), which are slow-growing brain tumors. The duration of response depends on genetic characteristics such as 1p/19q chromosomal codeletion, p53 mutation, and IDH mutations. However, up to now there are no means of predicting, at the individual level, the duration of the response to TMZ and its potential benefit for a given patient. • WHAT QUESTION DID THIS STUDY ADDRESS? þ The present study assessed whether combining longitudinal tumor size quantitative modeling with a tumor's genetic characterization could be an effective means of predicting the response to temozolomide at the individual level in LGG patients. • WHAT THIS STUDY ADDS TO OUR KNOWLEDGE þ For the first time, we developed a model of tumor growth inhibition integrating a tumor's genetic characteristics which successfully describes the time course of tumor size and captures potential tumor progression under chemotherapy in LGG patients treated with first-line temozolomide. The present study shows that using information on individual tumors' genetic characteristics, in addition to early tumor size measurements, it is possible to predict the duration and magnitude of response to temozolomide. • HOW THIS MIGHT CHANGE CLINICAL PHARMACOLOGY AND THERAPEUTICS þ Our model constitutes a rational tool to identify patients most likely to benefit from temozolomide and to optimize in these patients the duration of temozolomide therapy in order to ensure the longest duration of response to treatment. Response evaluation criteria such as RECIST—or RANO for brain tumors—are commonly used to assess response to anticancer treatments in clinical trials. 1,2 They assign a patient's response to one of four categories, ranging from " complete response " to " disease progression. " Yet, criticisms have been raised regarding the use of such categorical criteria in the drug development process, 3,4 and regulatory agencies have promoted the additional analysis of longitudinal tumor size measurements through the use of quantitative modeling. 5 Several mathematical models of tumor growth and response to treatment have been developed for this purpose. 6,7 These analyses have led to th
CRMP5 Regulates Generation and Survival of Newborn Neurons in Olfactory and Hippocampal Neurogenic Areas of the Adult Mouse Brain
The Collapsin Response Mediator Proteins (CRMPs) are highly expressed in the developing brain, and in adult brain areas that retain neurogenesis, ie: the olfactory bulb (OB) and the dentate gyrus (DG). During brain development, CRMPs are essentially involved in signaling of axon guidance and neurite outgrowth, but their functions in the adult brain remain largely unknown. CRMP5 has been initially identified as the target of auto-antibodies involved in paraneoplasic neurological diseases and further implicated in a neurite outgrowth inhibition mediated by tubulin binding. Interestingly, CRMP5 is also highly expressed in adult brain neurogenic areas where its functions have not yet been elucidated. Here we observed in both neurogenic areas of the adult mouse brain that CRMP5 was present in proliferating and post-mitotic neuroblasts, while they migrate and differentiate into mature neurons. In CRMP5−/− mice, the lack of CRMP5 resulted in a significant increase of proliferation and neurogenesis, but also in an excess of apoptotic death of granule cells in the OB and DG. These findings provide the first evidence that CRMP5 is involved in the generation and survival of newly generated neurons in areas of the adult brain with a high level of activity-dependent neuronal plasticity
Argonaute Autoantibodies as Biomarkers in Autoimmune Neurologic Diseases
OBJECTIVE: To identify and characterize autoantibodies (Abs) as novel biomarkers for an autoimmune context in patients with central and peripheral neurologic diseases. METHODS: Two distinct approaches (immunoprecipitation/mass spectrometry-based proteomics and protein microarrays) and patients' sera and CSF were used. The specificity of the identified target was confirmed by cell-based assay (CBA) in 856 control samples. RESULTS: Using the 2 methods as well as sera and CSF of patients with central and peripheral neurologic involvement, we identified Abs against the family of Argonaute proteins (mainly AGO1 and AGO2), which were already reported in systemic autoimmunity. AGO-Abs were mostly of immunoglobulin G 1 subclass and conformation dependent. Using CBA, AGO-Abs were detected in 21 patients with a high suspicion of autoimmune neurologic diseases (71.4% were women; median age 57 years) and only in 4/856 (0.5%) controls analyzed by CBA (1 diagnosed with small-cell lung cancer and the other 3 with Sjögren syndrome). Among the 21 neurologic patients identified, the main clinical presentations were sensory neuronopathy (8/21, 38.1%) and limbic encephalitis (6/21, 28.6%). Fourteen patients (66.7%) had autoimmune comorbidities and/or co-occurring Abs, whereas AGO-Abs were the only autoimmune biomarker for the remaining 7/21 (33.3%). Thirteen (61.9%) patients were treated with immunotherapy; 8/13 (61.5%) improved, and 3/13 (23.1%) remained stable, suggesting an efficacy of these treatments. CONCLUSIONS: AGO-Abs might be potential biomarkers of autoimmunity in patients with central and peripheral nonparaneoplastic neurologic diseases. In 7 patients, AGO-Abs were the only biomarkers; thus, their identification may be useful to suspect the autoimmune character of the neurologic disorder. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that AGO-Abs are more frequent in patients with autoimmune neurologic diseases than controls
Maintenance Therapy With Tumor-Treating Fields Plus Temozolomide vs Temozolomide Alone for Glioblastoma: A Randomized Clinical Trial.
IMPORTANCE: Glioblastoma is the most devastating primary malignancy of the central nervous system in adults. Most patients die within 1 to 2 years of diagnosis. Tumor-treating fields (TTFields) are a locoregionally delivered antimitotic treatment that interferes with cell division and organelle assembly.
OBJECTIVE: To evaluate the efficacy and safety of TTFields used in combination with temozolomide maintenance treatment after chemoradiation therapy for patients with glioblastoma.
DESIGN, SETTING, AND PARTICIPANTS: After completion of chemoradiotherapy, patients with glioblastoma were randomized (2:1) to receive maintenance treatment with either TTFields plus temozolomide (n = 466) or temozolomide alone (n = 229) (median time from diagnosis to randomization, 3.8 months in both groups). The study enrolled 695 of the planned 700 patients between July 2009 and November 2014 at 83 centers in the United States, Canada, Europe, Israel, and South Korea. The trial was terminated based on the results of this planned interim analysis.
INTERVENTIONS: Treatment with TTFields was delivered continuously (>18 hours/day) via 4 transducer arrays placed on the shaved scalp and connected to a portable medical device. Temozolomide (150-200 mg/m2/d) was given for 5 days of each 28-day cycle.
MAIN OUTCOMES AND MEASURES: The primary end point was progression-free survival in the intent-to-treat population (significance threshold of .01) with overall survival in the per-protocol population (n = 280) as a powered secondary end point (significance threshold of .006). This prespecified interim analysis was to be conducted on the first 315 patients after at least 18 months of follow-up.
RESULTS: The interim analysis included 210 patients randomized to TTFields plus temozolomide and 105 randomized to temozolomide alone, and was conducted at a median follow-up of 38 months (range, 18-60 months). Median progression-free survival in the intent-to-treat population was 7.1 months (95% CI, 5.9-8.2 months) in the TTFields plus temozolomide group and 4.0 months (95% CI, 3.3-5.2 months) in the temozolomide alone group (hazard ratio [HR], 0.62 [98.7% CI, 0.43-0.89]; P = .001). Median overall survival in the per-protocol population was 20.5 months (95% CI, 16.7-25.0 months) in the TTFields plus temozolomide group (n = 196) and 15.6 months (95% CI, 13.3-19.1 months) in the temozolomide alone group (n = 84) (HR, 0.64 [99.4% CI, 0.42-0.98]; P = .004).
CONCLUSIONS AND RELEVANCE: In this interim analysis of 315 patients with glioblastoma who had completed standard chemoradiation therapy, adding TTFields to maintenance temozolomide chemotherapy significantly prolonged progression-free and overall survival.
TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT00916409
Therapeutic and Prognostic Implications of BRAF V600E in Pediatric Low-Grade Gliomas
Purpose BRAF V600E is a potentially highly targetable mutation detected in a subset of pediatric low-grade gliomas (PLGGs). Its biologic and clinical effect within this diverse group of tumors remains unknown. Patients and Methods A combined clinical and genetic institutional study of patients with PLGGs with long-term follow-up was performed (N = 510). Clinical and treatment data of patients with BRAF V600E mutated PLGG (n = 99) were compared with a large international independent cohort of patients with BRAF V600E mutated-PLGG (n = 180). Results BRAF V600E mutation was detected in 69 of 405 patients (17%) with PLGG across a broad spectrum of histologies and sites, including midline locations, which are not often routinely biopsied in clinical practice. Patients with BRAF V600E PLGG exhibited poor outcomes after chemotherapy and radiation therapies that resulted in a 10-year progression-free survival of 27% (95% CI, 12.1% to 41.9%) and 60.2% (95% CI, 53.3% to 67.1%) for BRAF V600E and wild-type PLGG, respectively (P < .001). Additional multivariable clinical and molecular stratification revealed that the extent of resection and CDKN2A deletion contributed independently to poor outcome in BRAF V600E PLGG. A similar independent role for CDKN2A and resection on outcome were observed in the independent cohort. Quantitative imaging analysis revealed progressive disease and a lack of response to conventional chemotherapy in most patients with BRAF V600E PLGG. Conclusion BRAF V600E PLGG constitutes a distinct entity with poor prognosis when treated with current adjuvant therapy. (C) 2017 by American Society of Clinical Oncolog
Consensus Paper: Radiological Biomarkers of Cerebellar Diseases
Hereditary and sporadic cerebellar ataxias represent a vast and still growing group of diseases whose diagnosis and differentiation cannot only rely on clinical evaluation. Brain imaging including magnetic resonance (MR) and nuclear medicine techniques allows for characterization of structural and functional abnormalities underlying symptomatic ataxias. These methods thus constitute a potential source of radiological biomarkers, which could be used to identify these diseases and differentiate subgroups of them, and to assess their severity and their evolution. Such biomarkers mainly comprise qualitative and quantitative data obtained from MR including proton spectroscopy, diffusion imaging, tractography, voxel-based morphometry, functional imaging during task execution or in a resting state, and from SPETC and PET with several radiotracers. In the current article, we aim to illustrate briefly some applications of these neuroimaging tools to evaluation of cerebellar disorders such as inherited cerebellar ataxia, fetal developmental malformations, and immune-mediated cerebellar diseases and of neurodegenerative or early-developing diseases, such as dementia and autism in which cerebellar involvement is an emerging feature. Although these radiological biomarkers appear promising and helpful to better understand ataxia-related anatomical and physiological impairments, to date, very few of them have turned out to be specific for a given ataxia with atrophy of the cerebellar system being the main and the most usual alteration being observed. Consequently, much remains to be done to establish sensitivity, specificity, and reproducibility of available MR and nuclear medicine features as diagnostic, progression and surrogate biomarkers in clinical routine
Sur les différents processus de fabrication de disques de turbine à partir de poudres préalliées
Il est maintenant admis que l’avantage majeur de la métallurgie des poudres, appliquée à la fabrication de disques de turbine, réside dans les gains importants que cette technique est susceptible de procurer sur le plan économique.L’expérience actuelle permet de définir des processus d’élaboration de poudre et de transformation qui concilient les impératifs de performances et de fiabilité avec les objectifs de réduction de coût. Différents exemples illustrent l’influence des conditions d’utilisation, des choix de composition de matériaux, des modes de pulvérisation et de compaction
Recent breakthroughs in nickel base superalloys
Meanwhile the considerable amount of results acquired since more than sixty years in the study of this class of materials, the pre-eminence of nickel base superalloys in the gas turbine engineering, which is a domain in constant evolution, drives the significant progresses accomplished along the five last years. The knowledge, each day more precisely known, of the working conditions of the parts, the continuous increase of the computer capacity and the progressive sophistication of the designing methods end up in very high levels of requirements, progressively more complex, which induce the major routes of development. The particular accomplishments in three different domains of application will be described in this paper. Significant increases of performance have been acquired on directionally solidified turbine blades by an in-depth investigation of strain and damage mechanisms. Behaviour and ruin models take more and more into account the physical reality at each scale of observation of the crystalline structure response to coupled prompting of creep, fatigue and oxidation. On such a basis, a judicious choice of analytical compositions and overlays, with adapted conditions of manufacture enhance the use capability of the parts. In an other domain, decisive advantage has been taken of the variability of the forged materials devoted to disc applications. From the same chemistry of alloy, it is possible to optimize the structures according to various combinations of local stressing. This approach is funded on the disposal of efficient methods of microstructure prediction in relationship with the local rheological history. Precise control methods taking into account the complexity of the resulting microstructure allow the production of parts associated with narrow limits of life duration. At last, shall be discussed the significance of an adequate control of inclusion distribution and cleanliness in highly stressed superalloys in relationship with fatigue life duration. The problem more specific to superalloys produced by prealloyed powder metallurgy routes shall be analyzed and the solutions adapted to civil engine applications exposed
- …