165 research outputs found

    Levy flights in quenched random force fields

    Full text link
    Levy flights, characterized by the microscopic step index f, are for f<2 (the case of rare events) considered in short range and long range quenched random force fields with arbitrary vector character to first loop order in an expansion about the critical dimension 2f-2 in the short range case and the critical fall-off exponent 2f-2 in the long range case. By means of a dynamic renormalization group analysis based on the momentum shell integration method, we determine flows, fixed point, and the associated scaling properties for the probability distribution and the frequency and wave number dependent diffusion coefficient. Unlike the case of ordinary Brownian motion in a quenched force field characterized by a single critical dimension or fall-off exponent d=2, two critical dimensions appear in the Levy case. A critical dimension (or fall-off exponent) d=f below which the diffusion coefficient exhibits anomalous scaling behavior, i.e, algebraic spatial behavior and long time tails, and a critical dimension (or fall-off exponent) d=2f-2 below which the force correlations characterized by a non trivial fixed point become relevant. As a general result we find in all cases that the dynamic exponent z, characterizing the mean square displacement, locks onto the Levy index f, independent of dimension and independent of the presence of weak quenched disorder.Comment: 27 pages, Revtex file, 17 figures in ps format attached, submitted to Phys. Rev.

    Driven diffusive system with non-local perturbations

    Full text link
    We investigate the impact of non-local perturbations on driven diffusive systems. Two different problems are considered here. In one case, we introduce a non-local particle conservation along the direction of the drive and in another case, we incorporate a long-range temporal correlation in the noise present in the equation of motion. The effect of these perturbations on the anisotropy exponent or on the scaling of the two-point correlation function is studied using renormalization group analysis.Comment: 11 pages, 2 figure

    Glassy trapping of manifolds in nonpotential random flows

    Full text link
    We study the dynamics of polymers and elastic manifolds in non potential static random flows. We find that barriers are generated from combined effects of elasticity, disorder and thermal fluctuations. This leads to glassy trapping even in pure barrier-free divergenceless flows vf0fϕv {f \to 0}{\sim} f^\phi (ϕ>1\phi > 1). The physics is described by a new RG fixed point at finite temperature. We compute the anomalous roughness RLζR \sim L^\zeta and dynamical tLzt\sim L^z exponents for directed and isotropic manifolds.Comment: 5 pages, 3 figures, RevTe
    corecore