111 research outputs found

    卵黄粒蛋白分子の結晶格子構造の研究

    Get PDF
    金沢大学医学部研究課題/領域番号:X44070-----38412, 研究期間(年度):1969出典:研究課題「卵黄粒蛋白分子の結晶格子構造の研究」課題番号 X44070-----38412(KAKEN:科学研究費助成事業データベース(国立情報学研究所)) (https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-X44070-----38412/)を加工して作

    卵黄粒蛋白分子の結晶格子構造の研究

    Get PDF
    金沢大学医学部研究課題/領域番号:X43070------8412, 研究期間(年度):1968出典:研究課題「卵黄粒蛋白分子の結晶格子構造の研究」課題番号 X43070------8412(KAKEN:科学研究費助成事業データベース(国立情報学研究所)) (https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-X43070------8412/)を加工して作

    卵黄粒結晶構造のX線回折および電子顕微鏡による研究

    Get PDF
    金沢大学医学部研究課題/領域番号:X41440----710027, 研究期間(年度):1966出典:研究課題「卵黄粒結晶構造のX線回折および電子顕微鏡による研究」課題番号X41440----710027(KAKEN:科学研究費助成事業データベース(国立情報学研究所)) (https://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-X41440----710027/)を加工して作

    魚類の視神経および視神経乳頭の電子顕微鏡的研究

    Get PDF
    金沢大学医学部研究課題/領域番号60570025, 研究期間(年度):1985出典:研究課題「魚類の視神経および視神経乳頭の電子顕微鏡的研究」課題番号60570025(KAKEN:科学研究費助成事業データベース(国立情報学研究所)) (https://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-60570025/)を加工して作

    神経系の生体膜の微細構造に関する研究

    Get PDF
    金沢大学医学部研究課題/領域番号:X00070----444020, 研究期間(年度):1979 – 1981出典:「神経系の生体膜の微細構造に関する研究」研究成果報告書 課題番号X00070----444020(KAKEN:科学研究費助成事業データベース(国立情報学研究所)) (https://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-X00070----444020/)を加工して作

    Axonal Transmission in the Retina Introduces a Small Dispersion of Relative Timing in the Ganglion Cell Population Response

    Get PDF
    Background: Visual stimuli elicit action potentials in tens of different retinal ganglion cells. Each ganglion cell type responds with a different latency to a given stimulus, thus transforming the high-dimensional input into a temporal neural code. The timing of the first spikes between different retinal projection neurons cells may further change along axonal transmission. The purpose of this study is to investigate if intraretinal conduction velocity leads to a synchronization or dispersion of the population signal leaving the eye. Methodology/Principal Findings: We 'imaged' the initiation and transmission of light-evoked action potentials along individual axons in the rabbit retina at micron-scale resolution using a high-density multi-transistor array. We measured unimodal conduction velocity distributions (1.3 +/- 0.3 m/sec, mean +/- SD) for axonal populations at all retinal eccentricities with the exception of the central part that contains myelinated axons. The velocity variance within each piece of retina is caused by ganglion cell types that show narrower and slightly different average velocity tuning. Ganglion cells of the same type respond with similar latency to spatially homogenous stimuli and conduct with similar velocity. For ganglion cells of different type intraretinal conduction velocity and response latency to flashed stimuli are negatively correlated, indicating that differences in first spike timing increase (up to 10 msec). Similarly, the analysis of pair-wise correlated activity in response to white-noise stimuli reveals that conduction velocity and response latency are negatively correlated. Conclusion/Significance: Intraretinal conduction does not change the relative spike timing between ganglion cells of the same type but increases spike timing differences among ganglion cells of different type. The fastest retinal ganglion cells therefore act as indicators of new stimuli for postsynaptic neurons. The intraretinal dispersion of the population activity will not be compensated by variability in extraretinal conduction times, estimated from data in the literature

    Ultrastructure of the Golgi Apparatus of the Nerve Cells

    No full text
    corecore