3,610 research outputs found

    Magnetism, structure, and charge correlation at a pressure-induced Mott-Hubbard insulator-metal transition

    Get PDF
    We use synchrotron x-ray diffraction and electrical transport under pressure to probe both the magnetism and the structure of single crystal NiS2 across its Mott-Hubbard transition. In the insulator, the low-temperature antiferromagnetic order results from superexchange among correlated electrons and couples to a (1/2, 1/2, 1/2) superlattice distortion. Applying pressure suppresses the insulating state, but enhances the magnetism as the superexchange increases with decreasing lattice constant. By comparing our results under pressure to previous studies of doped crystals we show that this dependence of the magnetism on the lattice constant is consistent for both band broadening and band filling. In the high pressure metallic phase the lattice symmetry is reduced from cubic to monoclinic, pointing to the primary influence of charge correlations at the transition. There exists a wide regime of phase separation that may be a general characteristic of correlated quantum matter.Comment: 5 pages, 3 figure

    Zener double exchange from local valence fluctuations in magnetite

    Get PDF
    Magnetite (Fe3_{3}O4_{4}) is a mixed valent system where electronic conductivity occurs on the B-site (octahedral) iron sublattice of the spinel structure. Below TV=122T_{V}=122 K, a metal-insulator transition occurs which is argued to arise from the charge ordering of 2+ and 3+ iron valences on the B-sites (Verwey transition). Inelastic neutron scattering measurements show that optical spin waves propagating on the B-site sublattice (\sim80 meV) are shifted upwards in energy above TVT_{V} due to the occurrence of B-B ferromagnetic double exchange in the mixed valent metallic phase. The double exchange interaction affects only spin waves of Δ5\Delta_{5} symmetry, not all modes, indicating that valence fluctuations are slow and the double exchange is constrained by electron correlations above TVT_{V}.Comment: 4 pages, 5 figure

    Relation among concentrations of incorporated Mn atoms, ionized Mn acceptors, and holes in p-(Ga,Mn)As epilayers

    Full text link
    The amount of ionized Mn acceptors in various p-type Mn-doped GaAs epilayers has been evaluated by electrochemical capacitance-voltage measurements, and has been compared systematically with concentrations of incorporated Mn atoms and holes for wide range of Mn concentration (10^17 ~ 10^21 cm^-3). Quantitative assessment of anomalous Hall effect at room temperature is also carried out for the first time.Comment: 8 pages, 4 figures, tabl

    Dynamic phenomena in superconducting oxides by ESR

    Get PDF
    Dynamic electron spin resonance (ESR) measurements compare the paramagnetic and antiferromagnetic (AF) properties of superconducting oxides in the range 4 K to room temperature, at 8 MHz and 9.36 GHz. Two are derivatives of YBa2Cu30 7: 1: Nd(Nd0.05Ba0.95 )2Cu30 7, Te0 =72 K and II: Y0.2Cao.8Sr2[Cu2(Tlo.5Pb0.5 )]07, Te0 =108 K and two are cases where AF ordering dominates the weak superconductivity: III: Nb01.1\u3e 1. 25 ~Teo~ 10 K and IV: La2Ni04.00, 70 K :::: Teo:::: 40 K. At temperatures 298:::: T:::: 64 K, the ESR absorption by I indicates orthorhombic symmetry. The peaks at Ke =2.06, gb =2.13, and Ka =2.24 are identified with the presence of 5% Nd3+( 41912 ) in the Ba layer because the characteristic Cu2+ impurity hyperfine structure is absent and the ESR signal disappears several degrees below Te. Near Te the ESR absorption is reduced by two orders of magnitude. Proximity effects give rise to interference fringes with period r1 ( T) independent of the field B and the rate of sweep dBzldt. ESR is observed below Te because flux penetrates the superconductor. The temperature dependence of r1 leads to an activation energy for the flux motion E0 (1)/R ~ 16 K and Ea (111)/R ~3 K =Te /4. In the superconducting state a coherent flux expulsion response to a change in B. from 500 mT to zero is observed in times T, = 8 to 10 s. The inverse rate of noise spikes due to flux expulsion, when the samples are cooled through Te in a magnetic field, varies from Tnoise=3.5 s for III to 21 s for IV. The microwave absorption spectra identify three temperature regimes: (i) For 3.5 K \u3c T \u3c T m T* \u3c Teo superconducting behavior was confirmed by the energy loss near zero magnetic field and the kinetics of high-field noise due to flux expulsion. Near g =2.00 ESR absorption is observed for all materials. A broad absorption near 50 to 100 mT at 9.36 GHz has been attributed to AF resonance. (ii) T m T* ~ T ~ Te identifies the range where flux motion gives rise to interference fringes in the ESR absorption. (iii) ESR and AF resonance are observed immediately after warming above Tc

    Modus Vivendi Beyond the Social Contract: Peace, Justice, and Survival in Realist Political Theory

    Get PDF
    This essay examines the promise of the notion of modus vivendi for realist political theory. I interpret recent theories of modus vivendi as affirming the priority of peace over justice, and explore several ways of making sense of this idea. I proceed to identify two key problems for modus vivendi theory, so conceived. Normatively speaking, it remains unclear how this approach can sustain a realist critique of Rawlsian theorizing about justice while avoiding a Hobbesian endorsement of absolutism. And conceptually, the theory remains wedded to a key feature of social contract theory: political order is conceived as based on agreement. This construes the horizontal tensions among individual or group agents in society as prior to the vertical, authoritative relations between authorities and their subjects. Political authority thereby appears from the start as a solution to societal conflict, rather than a problem in itself. I argue that this way of framing the issue abstracts from political experience. Instead I attempt to rethink the notion of modus vivendi from within the lived experience of political conflict, as oriented not primarily toward peace, but political survival. With this shift of perspective, the idea of modus vivendi shows us, pace Bernard Williams, that the “first political question” is not how to achieve order and stability, but rather: what can I live with

    Verwey transition in Fe3_{3}O4_{4} at high pressure: quantum critical behavior at the onset of metallization

    Full text link
    We provide evidence for the existence of a {\em quantum critical point} at the metallization of magnetite Fe3_{3}O4_{4} at an applied pressure of pc8p_{c} \approx 8 GPa. We show that the present ac magnetic susceptibility data support earlier resistivity data. The Verwey temperature scales with pressure TV(1p/pc)νT_{V}\sim (1-p/p_{c})^{\nu}, with ν1/3\nu\sim 1/3. The resistivity data shows a temperature dependence ρ(T)=ρ0+ATn\rho(T)=\rho_{0}+AT^{n}, with n3n\simeq 3 above and 2.5 at the critical pressure, respectively. This difference in nn with pressure is a sign of critical behavior at pcp_{c}. The magnetic susceptibility is smooth near the critical pressure, both at the Verwey transition and near the ferroelectric anomaly. A comparison with the critical behavior observed in the Mott-Hubbard and related systems is made.Comment: 5 pages, 5 figure

    Brillouin scattering studies in Fe3_3O4_4 across the Verwey transition

    Full text link
    Brillouin scattering studies have been carried out on high quality single crystals of Fe3_3O4_4 with [100] and [110] faces in the temperature range of 300 to 30 K. The room temperature spectrum shows a surface Rayleigh wave (SRW) mode at 8 GHz and a longitudinal acoustic (LA) mode at 60 GHz. The SRW mode frequency shows a minimum at the Verwey transition temperature TVT_V of 123 K. The softening of the SRW mode frequency from about 250 K to TVT_V can be quantitatively understood as a result of a decrease in the shear elastic constant C44_{44}, arising from the coupling of shear strain to charge fluctuations. On the other hand, the LA mode frequency does not show any significant change around TVT_V, but shows a large change in its intensity. The latter shows a maximum at around 120 K in the cooling run and at 165 K in the heating run, exhibiting a large hysteresis of 45 K. This significant change in intensity may be related to the presence of stress-induced ordering of Fe3+^{3+} and Fe2+^{2+} at the octahedral sites, as well as to stress-induced domain wall motion.Comment: 14 pages, 3 figures, accepted in Physical Review B 200

    Investigation of the presence of charge order in magnetite by measurement of the spin wave spectrum

    Get PDF
    Inelastic neutron scattering results on magnetite (Fe3O4) show a large splitting in the acoustic spin wave branch, producing a 7 meV gap midway to the Brillouin zone boundary at q=(0,0,1∕2) and ℏω=43 meV. The splitting occurs below the Verwey transition temperature, where a metal-insulator transition occurs simultaneously with a structural transformation, supposedly caused by the charge ordering on the iron sublattice. The wavevector (0,0,1∕2) corresponds to the superlattice peak in the low symmetry structure. The dependence of the magnetic superexchange on changes in the crystal structure and ionic configurations that occur below the Verwey transition affect the spin wave dispersion. To better understand the origin of the observed splitting, several Heisenberg models intended to reproduce the pair-wise variation of the magnetic superexchange arising from both small crystalline distortions and charge ordering were studied. None of the models studied predicts the observed splitting, whose origin may arise from charge-density wave formation or magnetoelastic coupling.Work is supported by the U. S. Department of Energy Office of Science under the following contracts; Ames Laboratory under Contract No. W-7405-ENG-82, Oak Ridge National Laboratory, which is managed by UT-Batelle LLC, under Contract No. DE-AC00OR22725 and Brookhaven National Laboratory under Contract DEAC02-98CH10886
    corecore