85 research outputs found

    Personalized Video Recommendation Using Rich Contents from Videos

    Full text link
    Video recommendation has become an essential way of helping people explore the massive videos and discover the ones that may be of interest to them. In the existing video recommender systems, the models make the recommendations based on the user-video interactions and single specific content features. When the specific content features are unavailable, the performance of the existing models will seriously deteriorate. Inspired by the fact that rich contents (e.g., text, audio, motion, and so on) exist in videos, in this paper, we explore how to use these rich contents to overcome the limitations caused by the unavailability of the specific ones. Specifically, we propose a novel general framework that incorporates arbitrary single content feature with user-video interactions, named as collaborative embedding regression (CER) model, to make effective video recommendation in both in-matrix and out-of-matrix scenarios. Our extensive experiments on two real-world large-scale datasets show that CER beats the existing recommender models with any single content feature and is more time efficient. In addition, we propose a priority-based late fusion (PRI) method to gain the benefit brought by the integrating the multiple content features. The corresponding experiment shows that PRI brings real performance improvement to the baseline and outperforms the existing fusion methods

    Few-Shot Deep Adversarial Learning for Video-based Person Re-identification

    Full text link
    Video-based person re-identification (re-ID) refers to matching people across camera views from arbitrary unaligned video footages. Existing methods rely on supervision signals to optimise a projected space under which the distances between inter/intra-videos are maximised/minimised. However, this demands exhaustively labelling people across camera views, rendering them unable to be scaled in large networked cameras. Also, it is noticed that learning effective video representations with view invariance is not explicitly addressed for which features exhibit different distributions otherwise. Thus, matching videos for person re-ID demands flexible models to capture the dynamics in time-series observations and learn view-invariant representations with access to limited labeled training samples. In this paper, we propose a novel few-shot deep learning approach to video-based person re-ID, to learn comparable representations that are discriminative and view-invariant. The proposed method is developed on the variational recurrent neural networks (VRNNs) and trained adversarially to produce latent variables with temporal dependencies that are highly discriminative yet view-invariant in matching persons. Through extensive experiments conducted on three benchmark datasets, we empirically show the capability of our method in creating view-invariant temporal features and state-of-the-art performance achieved by our method.Comment: Appearing at IEEE Transactions on Image Processin

    Case report of a Li-Fraumeni syndrome-like phenotype with a de novo mutation in <i>CHEK2</i>

    Get PDF
    BACKGROUND: Cases of multiple tumors are rarely reported in China. In our study, a 57-year-old female patient had concurrent squamous cell carcinoma, mucoepidermoid carcinoma, brain cancer, bone cancer, and thyroid cancer, which has rarely been reported to date. METHODS: To determine the relationship among these multiple cancers, available DNA samples from the thyroid, lung, and skin tumors and from normal thyroid tissue were sequenced using whole exome sequencing. RESULTS: The notable discrepancies of somatic mutations among the 3 tumor tissues indicated that they arose independently, rather than metastasizing from 1 tumor. A novel deleterious germline mutation (chr22:29091846, G->A, p.H371Y) was identified in CHEK2, a Li–Fraumeni syndrome causal gene. Examining the status of this novel mutation in the patient's healthy siblings revealed its de novo origin. CONCLUSION: Our study reports the first case of Li–Fraumeni syndrome-like in Chinese patients and demonstrates the important contribution of de novo mutations in this type of rare disease

    Effectiveness Study of Moxibustion on Pain Relief in Primary Dysmenorrhea: Study Protocol of a Randomized Controlled Trial

    Get PDF
    Dysmenorrhea is a prevalent problem in menstruating women. As a nonpharmacologic and free of relevant side effects intervention, moxibustion is considered as a safe treatment and has long been recommended for dysmenorrhea in China. However, the exact effects of moxibustion in PD have not been fully understood. Therefore we designed this random clinical trial aiming to (1) investigate whether moxibustion is safe and effective for pain relief in primary dysmenorrhea when compared to conventional pain-killers and (2) assess the acceptability and side effects associated with moxibustion. The results of this trial will contribute to a better understanding of the different effects of moxibustion in pain relief in primary dysmenorrhea when compared to conventional pharmacologic pain treatment

    IL-10-producing regulatory B cells induced by IL-33 (BregIL-33) effectively attenuate mucosal inflammatory responses in the gut

    Get PDF
    Regulatory B cells (Breg) have attracted increasing attention for their roles in maintaining peripheral tolerance. Interleukin 33 (IL-33) is a recently identified IL-1 family member, which leads a double-life with both pro- and anti-inflammatory properties. We report here that peritoneal injection of IL-33 exacerbated inflammatory bowel disease in IL-10-deficient (IL-10-/-) mice, whereas IL-33-treated IL-10-sufficient (wild type) mice were protected from the disease induction. A phenotypically unconventional subset(s) (CD19+CD25+CD1dhiIgMhiCD5-CD23-Tim-1-) of IL-10 producing Breg-like cells (BregIL-33) was identified responsible for the protection. We demonstrated further that BregIL-33 isolated from these mice could suppress immune effector cell expansion and functions and, upon adoptive transfer, effectively blocked the development of spontaneous colitis in IL-10-/- mice. Our findings indicate an essential protective role, hence therapeutic potential, of BregIL-33 against mucosal inflammatory disorders in thegut. © 2014.link_to_subscribed_fulltex

    LCARS: a location-content-aware recommender system

    No full text
    Newly emerging location-based and event-based social network services provide us with a new platform to understand users' preferences based on their activity history. A user can only visit a limited number of venues/events and most of them are within a limited distance range, so the user-item matrix is very sparse, which creates a big challenge for traditional collaborative filtering-based recommender systems. The problem becomes more challenging when people travel to a new city where they have no activity history. In this paper, we propose LCARS, a location-content-aware recommender system that offers a particular user a set of venues (e.g., restaurants) or events (e.g., concerts and exhibitions) by giving consideration to both personal interest and local preference. This recommender system can facilitate people's travel not only near the area in which they live, but also in a city that is new to them. Specifically, LCARS consists of two components: offline modeling and online recommendation. The offline modeling part, called LCA-LDA, is designed to learn the interest of each individual user and the local preference of each individual city by capturing item co-occurrence patterns and exploiting item contents. The online recommendation part automatically combines the learnt interest of the querying user and the local preference of the querying city to produce the top-k recommendations. To speed up this online process, a scalable query processing technique is developed by extending the classic Threshold Algorithm (TA). We evaluate the performance of our recommender system on two large-scale real data sets, DoubanEvent and Foursquare. The results show the superiority of LCARS in recommending spatial items for users, especially when traveling to new cities, in terms of both effectiveness and efficiency

    Modeling location-based user rating profiles for personalized recommendation

    No full text
    This article proposes LA-LDA, a location-aware probabilistic generative model that exploits location-based ratings to model user profiles and produce recommendations. Most of the existing recommendation models do not consider the spatial information of users or items; however, LA-LDA supports three classes of locationbased ratings, namely spatial user ratings for nonspatial items, nonspatial user ratings for spatial items, and spatial user ratings for spatial items. LA-LDA consists of two components, ULA-LDA and ILA-LDA, which are designed to take into account user and item location information, respectively. The component ULA-LDA explicitly incorporates and quantifies the influence from local public preferences to produce recommendations by considering user home locations, whereas the component ILA-LDA recommends items that are closer in both taste and travel distance to the querying users by capturing item co-occurrence patterns, as well as item location co-occurrence patterns. The two components of LA-LDA can be applied either separately or collectively, depending on the available types of location-based ratings. To demonstrate the applicability and flexibility of the LA-LDA model, we deploy it to both top-k recommendation and cold start recommendation scenarios. Experimental evidence on large-scale real-world data, including the data from Gowalla (a location-based social network), DoubanEvent (an event-based social network), and MovieLens (a movie recommendation system), reveal that LA-LDA models user profiles more accurately by outperforming existing recommendation models for top-k recommendation and the cold start problem

    Lcars: A location-content-aware recommender system

    No full text
    ABSTRACT Newly emerging location-based and event-based social network services provide us with a new platform to understand users&apos; preferences based on their activity history. A user can only visit a limited number of venues/events and most of them are within a limited distance range, so the user-item matrix is very sparse, which creates a big challenge for traditional collaborative filtering-based recommender systems. The problem becomes more challenging when people travel to a new city where they have no activity history. In this paper, we propose LCARS, a location-content-aware recommender system that offers a particular user a set of venues (e.g., restaurants) or events (e.g., concerts and exhibitions) by giving consideration to both personal interest and local preference. This recommender system can facilitate people&apos;s travel not only near the area in which they live, but also in a city that is new to them. Specifically, LCARS consists of two components: offline modeling and online recommendation. The offline modeling part, called LCA-LDA, is designed to learn the interest of each individual user and the local preference of each individual city by capturing item cooccurrence patterns and exploiting item contents. The online recommendation part automatically combines the learnt interest of the querying user and the local preference of the querying city to produce the top-k recommendations. To speed up this online process, a scalable query processing technique is developed by extending the classic Threshold Algorithm (TA). We evaluate the performance of our recommender system on two large-scale real data sets, DoubanEvent and Foursquare. The results show the superiority of LCARS in recommending spatial items for users, especially when traveling to new cities, in terms of both effectiveness and efficiency
    corecore