1,714 research outputs found

    Position dependent energy level shifts of an accelerated atom in the presence of a boundary

    Full text link
    We consider a uniformly accelerated atom interacting with a vacuum electromagnetic field in the presence of an infinite conducting plane boundary and calculate separately the contributions of vacuum fluctuations and radiation reaction to the atomic energy level shift. We analyze in detail the behavior of the total energy shift in three different regimes of the distance in both the low acceleration and high acceleration limits. Our results show that, in general, an accelerated atom does not behave as if immersed in a thermal bath at the Unruh temperature in terms of the atomic energy level shifts, and the effect of the acceleration on the atomic energy level shifts may in principle become appreciable in certain circumstances, although it may not be realistic for actual experimental measurements. We also examine the effects of the acceleration on the level shifts when the acceleration is of the order of the transition frequency of the atom and we find some features differ from what was obtained in the existing literature.Comment: 26 pages, 6 figures, version published in PR

    Dominant Strategy Mechanisms with Multidimensional Types

    Get PDF
    This paper provides a characterization of dominant strategy mechanisms with quasi-linear utilities and multi-dimensional types for a variety of preference domains. These characterizations are in terms of a monotonicity property on the underlying allocation rule.Dominant Strategy, Farkas Lemma, Combinatorial Auctions.

    Brownian motion of a charged test particle near a reflecting boundary at finite temperature

    Full text link
    We discuss the random motion of charged test particles driven by quantum electromagnetic fluctuations at finite temperature in both the unbounded flat space and flat spacetime with a reflecting boundary and calculate the mean squared fluctuations in the velocity and position of the test particle. We show that typically the random motion driven by the quantum fluctuations is one order of magnitude less significant than that driven by thermal noise in the unbounded flat space. However, in the flat space with a reflecting plane boundary, the random motion of quantum origin can become much more significant than that of thermal origin at very low temperature.Comment: 11 pages,no figures, Revtex

    Thermal-Boundary-Layer Response to Convected Far-Field Fluid Temperature Changes

    Get PDF
    Fluid flows of varying temperature occur in heat exchangers, nuclear reactors, nonsteady-flow devices, and combustion engines, among other applications with heat transfer processes that influence energy conversion efficiency. A general numerical method was developed with the capability to predict the transient laminar thermal-boundary-layer response for similar or nonsimilar flow and thermal behaviors. The method was tested for the step change in the far-field flow temperature of a two-dimensional semi-infinite flat plate with steady hydrodynamic boundary layer and constant wall temperature assumptions. Changes in the magnitude and sign of the fluid-wall temperature difference were considered, including flow with no initial temperature difference and built-up thermal boundary layer. The equations for momentum and energy were solved based on the Keller-box finite-difference method. The accuracy of the method was verified by comparing with related transient solutions, the steady-state solution, and by grid independence tests. The existence of a similarity solution is shown for a step change in the far-field temperature and is verified by the computed general solution. Transient heat transfer correlations are presented, which indicate that both magnitude and direction of heat transfer can be significantly different from predictions by quasisteady models commonly used. The deviation is greater and lasts longer for large Prandtl number fluids

    Entanglement generation in atoms immersed in a thermal bath of external quantum scalar fields with a boundary

    Get PDF
    We examine the entanglement creation between two mutually independent two-level atoms immersed in a thermal bath of quantum scalar fields in the presence of a perfectly reflecting plane boundary. With the help of the master equation that describes the evolution in time of the atom subsystem obtained, in the weak-coupling limit, by tracing over environment (scalar fields) degrees of freedom, we find that the presence of the boundary may play a significant role in the entanglement creation in some circumstances and the new parameter, the distance of the atoms from the boundary, besides the bath temperature and the separation between the atoms, gives us more freedom in manipulating entanglement generation. Remarkably, the final remaining entanglement in the equilibrium state is independent of the presence of the boundary.Comment: 19 pages, 4 figures, to be published in PR

    Environmental Impact of High Altitudes on the Operation of PEM Fuel Cell Based UAS

    Get PDF
    Fuel cell is a device that converts the chemical energy in the reactants into the electrical energy after steps of sequential electrochemical processes with no significant impact on the environment. For high altitude long endurance (HALE) of unmanned aircraft system (UAS) where fuel cell operates as a prime source of power, the operation and performance of a PEM fuel cell at different level of altitudes is vitally important. In this paper, the impact of direct using extracted air from high altitudes atmosphere in order to feed the stack is investigated, and the governing equations of the supplied air and oxygen to the PEM fuel cell stack are developed. The impact of high altitudes upon the operation and the consumption of air are determined in order to maintain certain level of delivered power to the load. Also the implications associated with operating the PEM fuel cell stack at high altitudes and different technical solutions are proposed. Various modes of Integral, Proportional-Integral, and Proportional-Integral-Derivative controller are introduced and examined for different time setting responses in order to determine the most adequate trade-off choice between fast response and reactants consumption which provides the necessary optimization of the air consumption for the developed model of PEM fuel cell used for UAS operation

    Modification of energy shifts of atoms by the presence of a boundary in a thermal bath and the Casimir-Polder force

    Full text link
    We study the modification by the presence of a plane wall of energy level shifts of two-level atoms which are in multipolar coupling with quantized electromagnetic fields in a thermal bath in a formalism which separates the contributions of thermal fluctuations and radiation reaction and allows a distinct treatment to atoms in the ground and excited states. The position dependent energy shifts give rise to an induced force acting on the atoms. We are able to identify three different regimes where the force shows distinct features and examine, in all regimes, the behaviors of this force in both the low temperature limit and the high temperature limit for both the ground state and excited state atoms, thus providing some physical insights into the atom-wall interaction at finite temperature. In particular, we show that both the magnitude and the direction of the force acting on an atom may have a clear dependence on atomic the polarization directions. In certain cases, a change of relative ratio of polarizations in different directions may result in a change of direction of the force.Comment: 29 pages, 3 figure
    • …
    corecore