43 research outputs found

    JALAD: Joint Accuracy- and Latency-Aware Deep Structure Decoupling for Edge-Cloud Execution

    Full text link
    Recent years have witnessed a rapid growth of deep-network based services and applications. A practical and critical problem thus has emerged: how to effectively deploy the deep neural network models such that they can be executed efficiently. Conventional cloud-based approaches usually run the deep models in data center servers, causing large latency because a significant amount of data has to be transferred from the edge of network to the data center. In this paper, we propose JALAD, a joint accuracy- and latency-aware execution framework, which decouples a deep neural network so that a part of it will run at edge devices and the other part inside the conventional cloud, while only a minimum amount of data has to be transferred between them. Though the idea seems straightforward, we are facing challenges including i) how to find the best partition of a deep structure; ii) how to deploy the component at an edge device that only has limited computation power; and iii) how to minimize the overall execution latency. Our answers to these questions are a set of strategies in JALAD, including 1) A normalization based in-layer data compression strategy by jointly considering compression rate and model accuracy; 2) A latency-aware deep decoupling strategy to minimize the overall execution latency; and 3) An edge-cloud structure adaptation strategy that dynamically changes the decoupling for different network conditions. Experiments demonstrate that our solution can significantly reduce the execution latency: it speeds up the overall inference execution with a guaranteed model accuracy loss.Comment: conference, copyright transfered to IEE

    Caenorhabditis elegans RIG-I Homolog Mediates Antiviral RNA Interference Downstream of Dicer-Dependent Biogenesis of Viral Small Interfering RNAs.

    Get PDF
    Dicer enzymes process virus-specific double-stranded RNA (dsRNA) into small interfering RNAs (siRNAs) to initiate specific antiviral defense by related RNA interference (RNAi) pathways in plants, insects, nematodes, and mammals. Antiviral RNAi in Caenorhabditis elegans requires Dicer-related helicase 1 (DRH-1), not found in plants and insects but highly homologous to mammalian retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), intracellular viral RNA sensors that trigger innate immunity against RNA virus infection. However, it remains unclear if DRH-1 acts analogously to initiate antiviral RNAi in C. elegans Here, we performed a forward genetic screen to characterize antiviral RNAi in C. elegans Using a mapping-by-sequencing strategy, we uncovered four loss-of-function alleles of drh-1, three of which caused mutations in the helicase and C-terminal domains conserved in RLRs. Deep sequencing of small RNAs revealed an abundant population of Dicer-dependent virus-derived small interfering RNAs (vsiRNAs) in drh-1 single and double mutant animals after infection with Orsay virus, a positive-strand RNA virus. These findings provide further genetic evidence for the antiviral function of DRH-1 and illustrate that DRH-1 is not essential for the sensing and Dicer-mediated processing of the viral dsRNA replicative intermediates. Interestingly, vsiRNAs produced by drh-1 mutants were mapped overwhelmingly to the terminal regions of the viral genomic RNAs, in contrast to random distribution of vsiRNA hot spots when DRH-1 is functional. As RIG-I translocates on long dsRNA and DRH-1 exists in a complex with Dicer, we propose that DRH-1 facilitates the biogenesis of vsiRNAs in nematodes by catalyzing translocation of the Dicer complex on the viral long dsRNA precursors.IMPORTANCE The helicase and C-terminal domains of mammalian RLRs sense intracellular viral RNAs to initiate the interferon-regulated innate immunity against RNA virus infection. Both of the domains from human RIG-I can substitute for the corresponding domains of DRH-1 to mediate antiviral RNAi in C. elegans, suggesting an analogous role for DRH-1 as an intracellular dsRNA sensor to initiate antiviral RNAi. Here, we developed a forward genetic screen for the identification of host factors required for antiviral RNAi in C. elegans Characterization of four distinct drh-1 mutants obtained from the screen revealed that DRH-1 did not function to initiate antiviral RNAi. We show that DRH-1 acted in a downstream step to enhance Dicer-dependent biogenesis of viral siRNAs in C. elegans As mammals produce Dicer-dependent viral siRNAs to target RNA viruses, our findings suggest a possible role for mammalian RLRs and interferon signaling in the biogenesis of viral siRNAs

    Effect of dietary Ginkgo biloba leaf on the growth performance and nonspecific immunity of red swamp crayfish Procambarus clarkii

    Get PDF
    This trial investigated the effect of dietary Ginkgo biloba leaf (GBL) on the growth performance and nonspecific immunity of red swamp crayfish Procambarus clarkii. 180 Crayfishes were randomly divided into three groups. One group was fed with basic diet, whereas the other two groups were fed with diets containing 1% and 3% GBL. After 32 days of feeding, GBL addition tended to increase the body weight gain rate compared with control. In 3% GBL group, the bodyweight gain rate of male crayfish was higher than that of female crayfish. While female crayfish were advantageous in terms of meat yield. Liver-related indexes were influenced by GBL addition and 3% GBL could reduce glutamic pyruvic transaminase and glutamic oxaloacetic transaminase as well as total cholesterol in male crayfish, showing its function in liver protection. Moreover, GBL addition effects on liver protection was better in male crayfish than female crayfish

    Glt25d2 Knockout Directly Increases CD25+CD69– but Decreases CD25–CD69+ Subset Proliferation and is Involved in Concanavalin-Induced Hepatitis

    Get PDF
    Background/Aims: The elaborate structure of the extracellular matrix (ECM) and the appropriate surface glycoforms upon it are indispensable to CD4+ T cell regulation. Methods: To explore the effects of Glcα1,2Galβ1 glycosylation mediated by GLT25D2 (Colgalt2) for CD4+ T cell regulation, we prepared C57BL/6J Glt25d2-/- mice. In the induction of hepatitis, after concanavalin A (Con A) challenge for 6, 12, and 24 h, more extensive parenchymal injury was noted in Glt25d2-/- mice than in wild-type (WT) mice at 12 h. Immunohistochemistry and laser scanning confocal microscopy were used to detect GLT25D2 expression, and subsets of CD4+T cells was analyzed by flow cytometry. A total of 26 cytokines in serum samples were determined using Luminex technology. Results: The trend in liver injury score variation was consistent with serum alanine aminotransferase and aspartate aminotransferase levels. The levels of interleukin 4 (IL-4), IL-1β, IL-9, and several chemokines such as macrophage inflammatory protein-2, eotaxin, and growth-related oncogene α were significantly increased in Glt25d2-/- mice compared with WT mice after Con A challenge. A further phenotype analysis of primary Glt25d2-/- CD4+ T cells showed that Glt25d2 knockout increased the frequency of the CD25+CD69- subset but decreased the frequency of the CD25-CD69+ subset after Con A challenge for 6, 12, and 24 h compared with those of WT CD4+ T cells. Activation-induced apoptosis was also significantly increased in Glt25d2-/- CD4+ T cells after Con A challenge compared with WT CD4+ T cells. Lectin microarray hybridization showed that Glt25d2 knockout increased the binding activity of Narcissus pseudonarcissus lectin to CD4+ T cells but Amaranthus caudatus lectin–binding activity was lost during Con A challenge. Conclusion: The present results suggest that collagen glycosylation mediated by GLT25D2 may regulate a subset of CD4+ T cells and be involved in the pathogenesis of Con A–induced hepatitis

    Bone Marrow Myeloid Cells Regulate Myeloid-Biased Hematopoietic Stem Cells via a Histamine-Dependent Feedback Loop

    Get PDF
    Myeloid-biased hematopoietic stem cells (MB-HSCs) play critical roles in recovery from injury, but little is known about how they are regulated within the bone marrow niche. Here we describe an auto-/paracrine physiologic circuit that controls quiescence of MB-HSCs and hematopoietic progenitors marked by histidine decarboxylase (Hdc). Committed Hdc+ myeloid cells lie in close anatomical proximity to MB-HSCs and produce histamine, which activates the H2 receptor on MB-HSCs to promote their quiescence and self-renewal. Depleting histamine-producing cells enforces cell cycle entry, induces loss of serial transplant capacity, and sensitizes animals to chemotherapeutic injury. Increasing demand for myeloid cells via lipopolysaccharide (LPS) treatment specifically recruits MB-HSCs and progenitors into the cell cycle; cycling MB-HSCs fail to revert into quiescence in the absence of histamine feedback, leading to their depletion, while an H2 agonist protects MB-HSCs from depletion after sepsis. Thus, histamine couples lineage-specific physiological demands to intrinsically primed MB-HSCs to enforce homeostasis. Chen et al. show that histidine decarboxylase (Hdc) marks quiescent myeloid-biased HSCs (MB-HSCs). Daughter myeloid cells form a spatial cluster with Hdc+ MB-HSCs and secrete histamine to enforce their quiescence and protect them from depletion, following activation by a variety of physiologic insults

    Cell Therapy of Congenital Corneal Diseases with Umbilical Mesenchymal Stem Cells: Lumican Null Mice

    Get PDF
    BACKGROUND: Keratoplasty is the most effective treatment for corneal blindness, but suboptimal medical conditions and lack of qualified medical personnel and donated cornea often prevent the performance of corneal transplantation in developing countries. Our study aims to develop alternative treatment regimens for congenital corneal diseases of genetic mutation. METHODOLOGY/PRINCIPAL FINDINGS: Human mesenchymal stem cells isolated from neonatal umbilical cords were transplanted to treat thin and cloudy corneas of lumican null mice. Transplantation of umbilical mesenchymal stem cells significantly improved corneal transparency and increased stromal thickness of lumican null mice, but human umbilical hematopoietic stem cells failed to do the same. Further studies revealed that collagen lamellae were re-organized in corneal stroma of lumican null mice after mesenchymal stem cell transplantation. Transplanted umbilical mesenchymal stem cells survived in the mouse corneal stroma for more than 3 months with little or no graft rejection. In addition, these cells assumed a keratocyte phenotype, e.g., dendritic morphology, quiescence, expression of keratocyte unique keratan sulfated keratocan and lumican, and CD34. Moreover, umbilical mesenchymal stem cell transplantation improved host keratocyte functions, which was verified by enhanced expression of keratocan and aldehyde dehydrogenase class 3A1 in lumican null mice. CONCLUSIONS/SIGNIFICANCE: Umbilical mesenchymal stem cell transplantation is a promising treatment for congenital corneal diseases involving keratocyte dysfunction. Unlike donated corneas, umbilical mesenchymal stem cells are easily isolated, expanded, stored, and can be quickly recovered from liquid nitrogen when a patient is in urgent need
    corecore