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RNA intereferencing (RNAi) pathway regulates antiviral immunity and mediates plant
growth and development. Despite considerable research efforts, a few components
in RNAi pathway have been revealed, including ARGONAUTEs (AGOs), DICER-LIKEs
(DCLs), RNA-dependent RNA polymerase 1 and 6 (RDR1/6), and ALTERED MERISTEM
PROGRAM 1 (AMP1). In this study, we performed a forward genetic screening for
enhancers of rdr6 via inoculation of CMV2aT12b, a 2b-deficient Cucumber Mosaic
Virus that is unable to suppress RNAi-mediated antiviral immunity. We uncover that
the membrane-localized flippase Aminophospholipid ATPase 1 (ALA1) cooperates with
RDR6 and RDR1 to promote antiviral immunity and regulate fertility in Arabidopsis.
Moreover, we find that ALA2, a homolog of ALA1, also participates in antiviral immunity.
Our findings suggest that ALA1 and ALA2 act as novel components in the RNAi pathway
and function additively with RDR1 and RDR6 to mediate RNAi-based antiviral immunity
and plant development.
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INTRODUCTION

RNA interference (RNAi) mediates plant defense against virus infections (Ding et al., 2004;
Incarbone and Dunoyer, 2013; Martinez de Alba et al., 2013). DICER-LIKE ribonucleases (DCLs),
such as DCL4, generate viral short interferencing RNAs (siRNAs) (Blevins et al., 2006; Parent et al.,
2015), which direct the loading of viral RNAs into ARGONAUTE (AGO) proteins (e.g., AGO1) of
the RNA-induced silencing complex (RISC) for the cleavage of viral RNAs (Morel, 2002; Adenot
et al., 2006; Arribas-Hernandez et al., 2016), resulting in RNAi-mediated antiviral immunity. RNA-
dependent RNA polymerases (RDRs) (Xie et al., 2001; Talmor-Neiman et al., 2006; Cao et al., 2014),
including RDR1 and RDR6, promote synthesis of siRNAs by synthesizing long double-strand RNAs
(dsRNAs), contributing to the antiviral immunity (Qu et al., 2008; Garcia-Ruiz et al., 2010).

Viruses in turn evolve viral suppressor of RNAi (VSR) to suppress host antiviral immunity. For
example, Cucumber Mosaic Virus (CMV) utilizes the VSR protein 2b (Zhang et al., 2006; Diaz-
Pendon et al., 2007) to suppress host RNAi-based antiviral immunity and causes severe pathogenic
responses in wild-type Arabidopsis, while CMV2aT12b, a CMV mutant without expression of 2b
protein, is unable to cause any obvious viral symptoms in wild-type and the single mutants of RDR1
or RDR6, but is able to cause severe pathogenic responses in the RNAi-deficient double mutant rdr1
rdr6 (Wang et al., 2010).

Aminophospholipid transporting ATPases (ALAs) are membrane-localized flippases that are
responsible for transporting different lipids, which is essential for asymmetry of membrane lipid
bilayers (Lopez-Marques et al., 2010, 2012; Botella et al., 2016). There are 12 Arabidopsis thaliana
ALAs in the IV subfamily of ATPases that control plant development or tolerance to temperature
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stresses (Lopez-Marques et al., 2014). ALA1 is required for plant
tolerance to chilling (Gomes et al., 2000). ALA3 regulates pollen
germination and pollen tube growth, and adaptability to chilling
(Poulsen et al., 2008; McDowell et al., 2013). ALA6 and ALA7
control temperate-regulated pollen tube elongation (McDowell
et al., 2015). ALA10 affects lipid uptake to regulate root growth
and stomatal control (Botella et al., 2016).

In this study, we performed a forward genetic screening for
enhancers of rdr6 with CMV2aT12b infection on M2 population
of ethyl methanesulfonate (EMS)-mutagenized rdr6. We show
that ALA1 and ALA2 act additively with RDR1 and RDR6 to
mediate RNAi-mediated antiviral immunity and development.
Our findings discover novel roles of ALA1 and ALA2.

MATERIALS AND METHODS

Materials and Growth Conditions
The Arabidopsis thaliana mutants ala1-2 (Salk_056947), ala3
(GK-317H04), ala7 (Salk_125598) and ala10 (Salk_024877)
were obtained from Arabidopsis Biological Resource Center.
The Arabidopsis mutants rdr1-1 (SAIL_672_F11), rdr6-15
(SAIL_617H07), rdr1 rdr6, the L1 line transgenic for GUS, and
the 2b-deficient CMV mutant CMV2aT12b were described as
previously (Boutet et al., 2003; Wang et al., 2010). The ala1-2
rdr1, ala1-2 rdr6 and ala1-2 rdr1 rdr6 were generated via

genetic crossing. Nicotiana benthamiana was grown under a 16-h
(28◦C)/8-h (22◦C) light/dark condition.

For observation of growth defects in Figure 5C and fertility
and siliques development in Figure 3, Arabidopsis seeds were
sterilized with 20% bleach, plated on Murashige and Skoog
(MS) medium, chilled at 4◦C for 3 days, and transferred
to a growth room under a 16-h (23–25◦C)/8-h (18–20◦C)
light/dark photoperiod for 9 days. The 9-day-old seedlings were
transplanted into soil and grew in the same growth room for
another∼3 or∼6 weeks.

Viral Infection
For viral infection assays, Arabidopsis seedlings were sterilized,
plated on MS medium, chilled at 4◦C for 3 days, and transferred
to a growth room under a 16-h (23–25◦C)/8-h (18–20◦C)
light/dark photoperiod for 9 days. The 9-day-old seedlings
were transplanted into soil for growth of another 14 days
in a growth room under an 8-h (22–24◦C)/16-h (16–19◦C)
light/dark photoperiod. The 23-day-old plants were inoculated
with CMV2aT12b as described previously (Wang et al., 2010),
and the disease symptoms were recorded at 21 or 45 days after
infection.

EMS Mutagenesis
About 20,000 seeds (M1) of the Arabidopsis mutant rdr6-15
(SAIL_617H07) were soaked with 100 mM phosphate buffer

FIGURE 1 | ENOR1 encodes ALA1 and mediates antiviral immunity. (A) Schematic diagram of screening of enor (enhancer of rdr6) mutants and mapping of
ENOR loci. (B) Phenotypes of rdr6, enor1 rdr6 and the ala1 mutants generated by CRISPR/Cas9 in rdr6 (ala1-crispr1, ala1-crispr2, ala1-crispr3) at 21 days after
infection with mock or CMV2aT12b. (C) Phenotypes of Col-0, ala1-2 and the ala1-2 plant transgenic for the ALA1 gene driven by 35S promoter (ala1-2 35S::ALA1)
at 21 days after infection with mock or CMV2aT12b.
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FIGURE 2 | ALA1 acts through both RDR1/6-related and -unrelated pathways to mediate antiviral immunity. (A) Phenotypes of rdr1 rdr6, ala1-2 rdr6,
ala1-2 rdr1 and ala1-2 rdr1 rdr6 at 21 days after infection with mock or CMV2aT12b. (B) Phenotypes of Col-0, rdr1 rdr6, ala1-2 rdr6 and ala1-2 rdr1 rdr6 at
45 days after infection with mock or CMV2aT12b. (C) Immunoblotting analysis to detect the accumulations of CMV2aT12b from leaves of Col-0, rdr6, rdr1, ala1-2,
ala1-2 rdr6, ala1-2 rdr1, ala1-2 rdr1 rdr6 and rdr1 rdr6 at 21 days after infection with mock or CMV2aT12b. The coat protein (CP) of CMV2aT12b was detected by
anti-CP (α-CP) antibody. The large subunit of ribulose-1,5-bisphosphate was used as the loading control.

(pH 7.5) overnight at 4◦C, washed with sterilized water for five
times, and mutagenized with 0.6% ethyl methanesulfonate (EMS)
dissolved in phosphate buffer for 8 h at room temperature. The
mutagenized seeds were washed with sterilized water for 20 times,
and were grown in soil for collection of M2 seeds.

Generation of Mutants and Transgenic
Plants
Mutations at 698th (−), 1120th (+) and 2216th (+) bp of
coding sequence (CDS) of ALA1 (Supplementary Figure 1B),
and at the 951th (+) bp of CDS of ALA2 (Supplementary
Figure 5B) were introduced into the rdr6 mutant through
CRISPR/Cas9 method (Mao et al., 2013). The guide RNA of the
CRISPR target was driven by U6 promoter, and Cas9 was under
control of a CaMV35S promoter in a modified pCAMBIA1300
vector (Mao et al., 2013). Primers used for construction of
vectors are listed in Supplementary Table 1. The constructs were
introduced into rdr6 mutants through agrobacterium-mediated
flower dip method. The transgenic seeds were selected on MS
containing 20 mg/L hygromycin, T2 plants were inoculated with
CMV2aT12b. Mutations of ALA1 or ALA2 were confirmed by
sequencing.

The CDS of ALA1 was cloned into the pCAMBIA1300 vector
through SmaI and XbaI sites for fusion with three FLAG tags
under the control of CaMV35S promoter, and introduced into
the ala1-2 using agrobacterium-mediated flower dip method.

Whole-Genome Sequencing and Gene
Cloning of ENOR Loci
The F2 population generated by crossing enor1 rdr6 or
enor2 rdr6 with rdr6 were inoculated with CMV2aT12b. One
hundred susceptible plants from F2 population were harvested
at 21 days after inoculation to generate a bulked pool for DNA
extraction with DNeasy Plant Maxi Kit (QIAGEN, Cat. 68163)
and construction of DNA library. Whole genome sequencing
was performed with the illumina HiSeq2000 platform. The
softwares Skewer, Bowtie2 and SHOREmap were used to
analyze the data and isolate mutations (Schneeberger et al.,
2009; Sun and Schneeberger, 2015). The SNP-based Cleaved
Amplified Polymorphic Sequences (CAPSs) markers generated
from comparison of genome sequences of enor1 rdr6 or enor2
rdr6 with rdr6 were used to assist mapping and cloning of ENOR1
and ENOR2.

Immunoblotting Analysis
The total proteins were extracted from plants at 21 days after
inoculation with mock or CMV2aT12b. Fifty microgram of
total protein for each sample was quantified and loaded for
detection of coat protein (CP) of CMV2aT12b. The antibody
against coat protein (anti-CP) of CMV2aT12b was produced
by Abmart company (Abmart1) with the recombinant protein

1http://www.ab-mart.com.cn/

Frontiers in Plant Science | www.frontiersin.org 3 April 2017 | Volume 8 | Article 422

http://www.ab-mart.com.cn/
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-00422 April 5, 2017 Time: 17:11 # 4

Zhu et al. ALA1/2 Mediate RNAi-Based Antiviral Immunity

FIGURE 3 | ALA1 acts additively with RDR1 and RDR6 to regulate plant
development. (A,B) Phenotypes (A) and statistical analysis of numbers of
siliques with seeds (B) of the main inflorescences from Col-0, rdr1 rdr6 and
ala1-2 rdr1 rdr6. Red arrows indicate sterile siliques. Errors represent ± SE.
Lowercase letters indicate significant differences by one-way ANOVA analysis
with SPSS software (P < 0.05). (C) Phenotypes of representative fertile
siliques from Col-0, rdr1 rdr6 and ala1-2 rdr1 rdr6. The bar represents 2 mm.

of the 1st to 154th AA of CP. The anti-CP was used as first
antibody (1:6000), and anti-rabbit immunoglobulin antibody was
used as the secondary antibody respectively (1:3000). All of the
experiments were repeated at least three biological times.

GUS Staining
The L1 line transgenic for the β-glucuronidase (GUS) gene driven
by 35S promoter (35S::GUS), in which the GUS activity is very low
in all the expanded rosette leaves due to the post transcriptional
gene silencing (Boutet et al., 2003), was crossed with ala1-
2 to generate ala1-2 with L1 transgene (35S::GUS), named
ala1-2 35S::GUS. Eighteen ala1-2 35S::GUS plants were used
for histochemical staining of GUS using the method described
previously (Shan et al., 2011).

Quantitative Real-Time PCR Analysis
For Figure 6A, the expression of ALA family members was
analyzed in Col-0 and ala1-2 at 21 days after inoculation
with mock or CMV2aT12b. For Supplementary Figure 4, the
accumulation of genomic RNA of CMV2aT12b was analyzed
in Col-0 and ala1-2 at 21 days after CMV2aT12b inoculation.
The primers used for RNA detection of CMV2aT12b were
designed based on the conserved sequences from genomic RNA1
to RNA3 in the 3 prime end. The materials were harvested
for RNA extraction using trizol (TRANSGENE, Cat.ET101-01),

FIGURE 4 | ALA1 is involved in gene silencing. The effect of ala1-2 on
post-transcriptional silencing of 35S::GUS transgene of the L1 line. The
35S::GUS transgene was post-transcriptionally silenced in the L1 line (Boutet
et al., 2003); the homozygous ala1-2 mutation prevents silencing of the GUS
transgene in all expanded rosette leaves of the L1 line (ala1 35S::GUS), which
was identified from F2 population of ala1-2 and L1.

and reverse transcription was performed according to the kit
(TRANSGENE, Cat. AT311-03). Quantitative real-time PCR
was performed with EvaGreen 2∗qPCR MasterMix-Low ROX
reagents (ABM, Cat. Mastermix-LR) using the ABI7500 real-time
PCR system. ACTIN8 was used as the internal control. All of
the experiments were repeated at least three biological times.
Primers used for quantitative real-time PCR analysis are listed in
Supplementary Table 1.

Phylogenetic Analysis
For the phylogenetic analysis shown in Supplementary Figure 6,
the evolutionary history was inferred using the Neighbor-Joining
method (Saitou and Nei, 1987). The optimal tree with the sum
of branch length (4.45679805) is shown. The percentage of
replicate trees in which the associated taxa clustered together
in the bootstrap test (500 replicates) are shown next to the
branches (Felsenstein, 1985). The evolutionary distances were
computed using the Poisson correction method (Zuckerkandl
and Pauling, 1965) and are in the units of the number of
amino acid substitutions per site. The analysis involved all 12
amino acid sequences of ALA family. All positions containing
gaps and missing data were eliminated. There were a total of
794 positions in the final dataset. Evolutionary analyses were
conducted in MEGA6 (Tamura et al., 2013). The transcripts,
including ALA1 (AT5G04930.1), ALA2 (AT5G44240.1), ALA3
(AT1G59820.1), ALA4 (AT1G17500.1), ALA5 (AT1G72700.1),
ALA6 (AT1G54280.1), ALA7 (AT3G13900.1), ALA8
(AT3G27870.1), ALA9 (AT1G68710.1), ALA10 (AT3G25610.1),
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ALA11 (AT1G13210.1), and ALA12 (AT1G26130.2), were used
for phylogenetic analysis.

Subcellular Localization
Coding sequence of ALA1 was cloned into the pJG054 vector
for fusion with YFP under control of CaMV35S promoter
(YFP-ALA1). The agrobacterium containing YFP-ALA1 or the
mCherry-ER-marker were resuspended in the infiltration buffer
(10 mM MgCl2, 10 mM MES, 0.2 mM acetosyringone) for 3-5 h,
and co-infiltrated into leaves of N. benthamiana. The fluorescence
signals were collected with a Zeiss microscope (LSM710) at∼50 h
after co-infiltration. All of the experiments were repeated at least
three biological times.

Accession Numbers
The Arabidopsis Genome Initiative numbers for genes mentioned
in this letter are as follows: ALA1 (AT5G04930), ALA2
(AT5G44240), ALA3 (AT1G59820), ALA4 (AT1G17500), ALA5
(AT1G72700), ALA6 (AT1G54280), ALA7 (AT3G13900), ALA8
(AT3G27870), ALA9 (AT1G68710), ALA10 (AT3G25610),
ALA11 (AT1G13210), ALA12 (AT1G26130), RDR1
(AT1G14790), RDR6 (AT3G49500), and ACTIN8 (AT1G49240).

RESULTS

Identification and Mapping of the enor1
Mutant
We generated M2 population of EMS-mutagenized rdr6, and
inoculated M2 with CMV2aT12b to identify mutants that
enhanced the susceptibility to CMV2aT12b in rdr6 (referred
to as enhancer of rdr6 [enor]), and utilized whole genome
sequencing to assist mapping and cloning of ENOR loci
(Figure 1A).

As shown in Figure 1B, the newly identified mutant enor1
in the rdr6 background, named enor1 rdr6, exhibited severely
stunted and clustered leaves after infection with CMV2aT12b.
One fourth of F2 population from the cross between enor1
rdr6 and rdr6 were susceptible to CMV2aT12b, demonstrating
that enor1 is a recessive mutation. In order to map the ENOR1
locus, we generated a bulked pool of susceptible plants from
the F2 population for whole-genome sequencing, screened
mutations by comparing the sequences with SHOREmap
methods (Schneeberger et al., 2009; Sun and Schneeberger, 2015),
and mapped the ENOR1 locus using CAPS markers (Figure 1A).
We finally found that only a C to T mutation at the 2965th bp of
CDS of AT5G04930, which causes a premature stop codon and
generates a HaeIII-based CAPS marker, co-segregated with enor1
(Supplementary Figures 1A,B).

ENOR1 Corresponds to ALA1 and Is
Essential for Antiviral Immunity
AT5G04930 encodes ALA1 (Lopez-Marques et al., 2014)
that co-localizes with the mCherry-ER-marker (Supplementary
Figure 2) (Lopez-Marques et al., 2012). To further genetically
verify whether AT5G04930 (ALA1) corresponds to ENOR1 and

FIGURE 5 | ALA2 acts additively with RDR6 and redundantly with ALA1
in antiviral immunity. (A) Phenotypes of enor2 rdr6, and the ala2-crispr1
mutant generated by CRISPR/Cas9 in rdr6 (ala2-crispr1 rdr6) at 21 days after
infection with mock or CMV2aT12b. (B) Immunoblotting analysis to detect
the accumulations of CMV2aT12b from leaves of enor1 rdr6 and enor2 rdr6
at 21 days after infection with mock or CMV2aT12b. The coat protein (CP) of
CMV2aT12b was detected by anti-CP (α-CP) antibody. The large subunit of
ribulose-1,5-bisphosphate was used as the loading control. (C) Phenotypes
of 30-day-old seedlings of rdr6, enor1 rdr6, enor2 rdr6, and enor1 enor2 rdr6.

mediates antiviral immunity, we generated ala1 mutants by the
CRISPR/Cas9 genome editing method (Feng et al., 2014; Jia et al.,
2016) in the rdr6 background, and examined whether these ala1-
crispr rdr6 double mutants exhibit the viral symptoms similar
to that of enor1 rdr6 when inoculated with CMV2aT12b. As
shown in Figure 1B, all the ala1-crispr rdr6 double mutants were
severely susceptible to CMV2aT12b, demonstrating that ALA1
corresponds to ENOR1 and is required for antiviral immunity.

We also obtained a T-DNA insertional mutant (Salk_056947,
named ala1-2) of ALA1 (Supplementary Figure 1B), and
found that the ala1-2 single mutant was mildly susceptible to
CMV2aT12b, less severe than ala1-crispr rdr6 (Figures 1B,C),
which also supports of the ALA1 function in antiviral immunity.
Moreover, we found that transgenic expression of ALA1 under
the control of CaMV 35S promoter fully restored the mutant
phenotypes of ala1-2 (Figure 1C).

ALA1 Acts Additively With RDR1 and
RDR6 to Regulate Antiviral Immunity
Further analyses of various double mutants and the triple mutant
ala1-2 rdr1 rdr6 showed that all the double mutants including
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FIGURE 6 | Analysis of ALA members in antiviral silencing. (A) Quantitative real-time PCR showed the relative expression levels of ALA family members in
Col-0 and ala1-2 after inoculation with mock or CMV2aT12b. The data are means (±SE) from three biological repeats. (B) Phenotypes of the ala3, ala7 and ala10
mutants at 21 days after infection with mock or CMV2aT12b.

ala1-2 rdr6, ala1-2 rdr1, enor1 rdr6, ala1-crispr rdr6 and rdr1 rdr6
exhibited similar symptoms after inoculation with CMV2aT12b,
which were much more severe than the single mutant ala1-
2, while the triple mutant ala1-2 rdr1 rdr6 showed the most
severe symptoms with over-stunted newly born leaves and yellow
old chlorotic leaves (Figures 1B,C, 2A,B and Supplementary
Figure 3). These results suggest that ALA1 functions additively
with RDR1 and RDR6 to mediate plant immunity.

The immunoblot analysis with antibody against the CP of
CMV2aT12b showed that CMV2aT12b accumulated much
more in ala1-2 than in wild-type, and that the double mutants
(ala1-2 rdr6, ala1-2 rdr1 and rdr1 rdr6) accumulated much
more CP than the corresponding single mutants (Figure 2C).
These results further demonstrate that ALA1 acts additively with
RDR1 and RDR6 to mediate RNAi-based antiviral immunity.
Interestingly, the triple mutant ala1-2 rdr1 rdr6 showed enhanced
susceptibility compared with the double mutant rdr1 rdr6 when
inoculated with CMV2aT12b, however, the accumulation of

CMV2aT12b was indistinguishable between the triple mutant
ala1-2 rdr1 rdr6 and the double mutant rdr1 rdr6, implying that
ALA1 mediates plant immunity through both a RDR1/6-related
RNAi pathway and RDR1/6–unrelated pathways.

Further phenotypic analysis showed that the ala1-2 rdr1 rdr6
triple mutant also displays developmental defects, including
shorter siliques and less fertile siliques (Figures 3A–C). These
results imply that ALA1 may function additively with RDR1
and RDR6 to mediate RNAi-regulated plant development,
consistent with the previous observations that RNAi, in addition
to the RNAi-mediated plant immunity, also mediates plant
developmental processes (Yoshikawa et al., 2005).

ALA1 Is Required for Gene Silencing
Having shown that ALA1 acts additively with RDR1 and RDR6
in RNAi-based antiviral immunity and development, we further
verified whether ALA1 affects gene silencing via genetic cross
of the ala1-2 mutant with the L1, a transgenic silencing marker
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line where the GUS transgene driven by the CaMV35S promoter
(35S::GUS) was silenced and expressed at low level (Boutet
et al., 2003). As shown in Figure 4, the GUS activity was
obviously increased in ala1-2 (named ala1-2 35S::GUS). These
data demonstrate that mutation in ALA1 abolished the gene
silencing on the GUS transgene driven by the 35S promoter,
suggesting that ALA1 is indeed required for gene silencing.
Consistently, our quantitative real-time PCR analysis showed that
the accumulation of CMV2aT12b RNA in ala1-2 was much
higher than that in Col-0, further supporting the essential roles
of ALA1 in gene silencing and antiviral defense.

ALA2 Also Participates in Antiviral
Immunity
During the screening, we isolated a second enhancer mutant
enor2 rdr6 (Figure 5A), in which CP accumulation was similar
with that in enor1 rdr6 (Figure 5B). We further found that
ENOR2 encodes ALA2 by performing the same mapping and
identification procedures as ENOR1 (Supplementary Figure 5A).
The ALA2 gene in enor2 rdr6 contained a G to A mutation at the
1995th bp, leading to a premature stop codon (Supplementary
Figure 5B), and mutation of ALA2 by CRISPR/Cas9 in rdr6
also resulted in severe susceptibility to CMV2aT12b (Figure 5A
and Supplementary Figure 5B), suggesting that ALA2 mediates
antiviral immunity. Moreover, we generated the enor1 enor2
rdr6 triple mutant, and found that enor1 enor2 rdr6 displayed
severe developmental defects, including stunted leaves, which is
similar with CMV2aT12b-infected enor1 rdr6 and enor2 rdr6
(Figure 5C). This results (Figure 5) indicate that both ALA1 and
ALA2 act additively with RDR6 to mediate antiviral immunity
and plant growth.

Analysis of Other ALAs in Antiviral
Immunity
Phylogenetic analysis of the ALA family proteins showed that
ALA1 and ALA2 are the closest members, and other members
are less related (Supplementary Figure 6). We observed that
CMV2aT12b infection dramatically induced the expression of
ALA7 and ALA10 in ala1-2, but could not obviously affect the
expression of other ALAs in wild-type and ala1-2 (Figure 6A).
We next investigated whether other ALA members play a role
in antiviral immunity. The T-DNA insertion mutants of ALA3
to ALA12 were inoculated with CMV2aT12b, and the results
showed that none of these mutants were susceptible (Figure 6B
and data not shown). It remains to be elucidated whether these
ALAs function redundantly to mediate RNAi-based antiviral
immunity and plant development.

DISCUSSION

It is well known that the RNAi pathway regulates plant
growth, development and immunity. Previous studies have
revealed that AGOs, DCLs, RDR1 and RDR6 are essential
components of RNAi pathway (Ding and Voinnet, 2007; Qu
et al., 2008; Wang et al., 2010; Cao et al., 2014). In this

study, we developed an effective forward genetic screening
using 2b-deficient CMV2aT12b, and defined ALA1 and ALA2,
membrane-localized proteins (Figures 1, 5 and Supplementary
Figure 2) (Lopez-Marques et al., 2010, 2012), as the new
components in the RNAi pathway. ALA1 plays an essential role in
gene silencing, and acts additively with RDR1/6 to mediate RNAi-
based antiviral immunity and plant development (Figures 2–4).
ALA2 also participates in antiviral defense and development, and
acts redundantly with ALA1 in regulation of plant development
in rdr6 background (Figure 5C).

A recent study showed that AMP1, a novel key component
in RNAi pathway, associates with AGO1 and mediates miRNA-
targeted translational inhibition of mRNA on ER membrane
(Li et al., 2013). miRNA-guided cleavage can also occur on ER
membrane-bound polysomes (Li et al., 2016). These studies take
ER into a central stage of small RNAs-mediated silencing (Ma
et al., 2013; Li et al., 2016). On the other hand, viruses recruit
ER membrane and manipulate lipid synthesis, transport and
metabolism to form a circumstance essential for viral replication
and morphogenesis (Fernández de Castro et al., 2016). Our
finding that the ER membrane-localized ALA1 and ALA2 are
essential players in silencing pathway and antiviral immunity
would help to study and understand both the small RNAs
machinery on ER membrane and the roles of lipid transport
in silencing and antiviral defense. It would be interesting to
investigate whether ALA1 and ALA2 associate with AMP1 and/or
AGO1 to mediate gene silencing and antiviral immunity.
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