124 research outputs found

    Arabidopsis IAR4 Modulates Primary Root Growth Under Salt Stress Through ROS-Mediated Modulation of Auxin Distribution

    Get PDF
    High salinity is one of the major environmental stresses that plants encounter. Roots are the initial and direct organs to perceive the signal. However, how plant roots perceive and respond to salinity at the molecular and physiological levels is still poorly understood. Here, we report that IAA-CONJUGATE-RESISTANT 4 (IAR4) plays a key role in primary root growth under salt stress conditions. Mutation of IAR4 led to increased sensitivity to salt stress conditions, with strongly inhibited primary root growth and reduced survival rate in two iar4 mutant alleles. iar4 mutants accumulated greater Na+ and exhibited a greater Na+/K+ ratio under NaCl treatment. In addition, more reactive oxygen species (ROS) accumulated in the iar4 mutants due to reduced ROS scavenging. NaCl treatment greatly suppressed the expression levels of ProPIN1:PIN1-GFP, ProPIN2:PIN2-GFP, ProPIN3:PIN3-GFP, and ProDR5:GFP, and suppressed root meristem activity in iar4. GSH or auxin treatment greatly recovered the PIN expression, auxin distribution and primary root growth in the iar4 mutants, suggesting ROS is a vital mediator between salt stress and auxin response. Our data support a model in which IAR4 integrates ROS and auxin pathways to modulate primary root growth under salinity stress conditions, by regulation of PIN-mediated auxin transport

    MiR-9 promotes microglial activation by targeting MCPIP1

    Get PDF
    Microglia participate in innate inflammatory responses within the central nervous system. The highly conserved microRNA-9 (miR-9) plays critical roles in neurogenesis as well as axonal extension. Its role in microglial inflammatory responses, however, remains poorly understood. Here we identify a unique role of miR-9 in mediating the microglial inflammatory response via distinct signalling pathways. MiR-9-mediated regulation of cellular activation involved downregulated expression of the target protein, monocyte chemotactic protein-induced protein 1 (MCPIP1) that is crucial for controlling inflammation. Results indicate that miR-9-mediated cellular activation involved signalling via the NF-kappa B pathway, but not the beta-catenin pathway

    Polyethyleneimine-coated MXene quantum dots improve cotton tolerance to Verticillium dahliae by maintaining ROS homeostasis

    Get PDF
    Verticillium dahliae is a soil-borne hemibiotrophic fungal pathogen that threatens cotton production worldwide. In this study, we assemble the genomes of two V. dahliae isolates: the more virulence and defoliating isolate V991 and nondefoliating isolate 1cd3-2. Transcriptome and comparative genomics analyses show that genes associated with pathogen virulence are mostly induced at the late stage of infection (Stage II), accompanied by a burst of reactive oxygen species (ROS), with upregulation of more genes involved in defense response in cotton. We identify the V991-specific virulence gene SP3 that is highly expressed during the infection Stage II. V. dahliae SP3 knock-out strain shows attenuated virulence and triggers less ROS production in cotton plants. To control the disease, we employ polyethyleneimine-coated MXene quantum dots (PEI-MQDs) that possess the ability to remove ROS. Cotton seedlings treated with PEI-MQDs are capable of maintaining ROS homeostasis with enhanced peroxidase, catalase, and glutathione peroxidase activities and exhibit improved tolerance to V. dahliae. These results suggest that V. dahliae trigger ROS production to promote infection and scavenging ROS is an effective way to manage this disease. This study reveals a virulence mechanism of V. dahliae and provides a means for V. dahliae resistance that benefits cotton production

    COMT, 5-HTR2A, and SLC6A4 mRNA Expressions in First-Episode Antipsychotic-Naïve Schizophrenia and Association With Treatment Outcomes

    Get PDF
    Background: Dopaminergic and serotonergic systems play crucial roles in the pathophysiology of schizophrenia and modulate response to antipsychotic treatment. However, previous studies of dopaminergic and serotonergic genes expression are sparse, and their results have been inconsistent. In this longitudinal study, we aim to investigate the expressions of Catechol-O-methyltransferase (COMT), serotonin 2A receptor (5-HTR2A), and serotonin transporter gene (SLC6A4) mRNA in first-episode antipsychotic-naïve schizophrenia and to test if these mRNA expressions are associated with cognitive deficits and treatment outcomes or not.Method: We measured COMT, 5-HTR2A, and SLC6A4 mRNA expressions in 45 drug-naive first-episode schizophrenia patients and 38 health controls at baseline, and repeated mRNA measurements in all patients at the 8-week follow up. Furthermore, we also assessed antipsychotic response and cognitive improvement after 8 weeks of risperidone monotherapy.Results: Patients were divided into responders (N = 20) and non-responders groups (N = 25) according to the Remission criteria of the Schizophrenia Working Group. Both patient groups have significantly higher COMT mRNA expression and lower SLC6A4 mRNA expression when compared with healthy controls. Interestingly, responder patients have significantly higher levels of COMT and 5-HTR2A mRNA expressions than non-responder patients at baseline. However, antipsychotic treatment has no significant effect on the expressions of COMT, 5-HTR2A, and SLC6A4 mRNA over 8-week follow up.Conclusion: Our findings suggest that dysregulated COMT and SLC6A4 mRNA expressions may implicate in the pathophysiology of schizophrenia, and that COMT and 5-HTR2A mRNA may be potential biomarkers to predict antipsychotic response

    Activating Transcription Factor 4 Confers a Multidrug Resistance Phenotype to Gastric Cancer Cells through Transactivation of SIRT1 Expression

    Get PDF
    BACKGROUND: Multidrug resistance (MDR) in gastric cancer remains a major challenge to clinical treatment. Activating transcription factor 4 (ATF4) is a stress response gene involved in homeostasis and cellular protection. However, the expression and function of ATF4 in gastric cancer MDR remains unknown. In this study, we investigate whether ATF4 play a role in gastric cancer MDR and its potential mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrated that ATF4 overexpression confered the MDR phenotype to gastric cancer cells, while knockdown of ATF4 in the MDR variants induced re-sensitization. In this study we also showed that the NAD(+)-dependent histone deacetylase SIRT1 was required for ATF4-induced MDR effect in gastric cancer cells. We demonstrated that ATF4 facilitated MDR in gastric cancer cells through direct binding to the SIRT1 promoter, resulting in SIRT1 up-regulation. Significantly, inhibition of SIRT1 by small interfering RNA (siRNA) or a specific inhibitor (EX-527) reintroduced therapeutic sensitivity. Also, an increased Bcl-2/Bax ratio and MDR1 expression level were found in ATF4-overexpressing cells. CONCLUSIONS/SIGNIFICANCE: We showed that ATF4 had a key role in the regulation of MDR in gastric cancer cells in response to chemotherapy and these findings suggest that targeting ATF4 could relieve therapeutic resistance in gastric cancer

    Natural Variation in Arabidopsis Cvi-0 Accession Reveals an Important Role of MPK12 in Guard Cell CO2 Signaling

    Get PDF
    Author Summary Human activities have increased the concentrations of CO2 and harmful air pollutants such as ozone in the troposphere. These changes can have detrimental consequences for agricultural productivity. Guard cells, which form stomatal pores on leaves, regulate plant gas exchange. To maintain photosynthesis, stomata open to allow CO2 uptake, but at the same time, open stomata lead to loss of water and allow the entrance of ozone. Elevated atmospheric CO2 levels reduce stomatal apertures, which can improve plant water balance but also increases leaf temperature. Using genetic approaches—in which we exploit natural variation and mutant analysis of thale cress (Arabidopsis thaliana)—we find that MITOGEN-ACTIVATED PROTEIN KINASE 12 (MPK12) and its inhibitory interaction with another kinase, HIGH LEAF TEMPERATURE 1 (HT1) (involved in guard cell CO2 signaling), play a key role in this regulatory process. We have therefore identified a mechanism in which guard cell CO2 signaling regulates how efficiently plants use water and cope with the air pollutant ozone.Peer reviewe
    • …
    corecore