1,327 research outputs found

    Effects of different rhizosphere ventilation treatment on water and nutrients absorption of maize

    Get PDF
    The objective of this study was to explore the effects of different rhizosphere ventilation treatment on water and nutrients absorption of maize. The pot experiment was conducted using three methods: no ventilation, two day ventilation and four day ventilation, under conditions of the different levels of irrigation methods. As such, the influence of rhizosphere ventilation treatment on the physiological, water and nutrient absorption of maize was studied. Results showed that, with the increase inventilation frequency, plant height, leaf area and the content of chlorophyll in maize increased to a certain degree. Root activity of once in every four days ventilation was the biggest (8.237 mg/ (g·h)), followed by that of once in every two days ventilation (6.171 mg/ (g·h)), and that of no ventilation was the least (4.940 mg/ (g·h)). Consequently, it increased by 66.7 and 29.9%, respectively. The chlorophyll content experimental results showed that, rhizosphere ventilation treatment does not affect transpiration of potted maize and has no significant difference on the irrigation water utilization rate.Key words: Potted maize, rhizosphere ventilation, water, nutrients absorption, agricultural water-saving

    An Angular Position-Based Two-Stage Friction Modeling and Compensation Method for RV Transmission System

    Get PDF
    In RV transmission system (RVTS), friction is closely related to rotational speed and angular position. However, classical friction models do not consider the influence of angular position on friction, resulting in limited accuracy in describing the RVTS frictional behavior. For this reason, this paper proposes an angular position-based two-stage friction model for RVTS, and achieves a more accurate representation of friction of RVTS. The proposed model consists of two parts, namely pre-sliding model and sliding model, which are divided by the maximum elastic deformation recovery angle of RVTS obtained from loading-unloading tests. The pre-sliding friction behavior is regarded as a spring model, whose stiffness is determined by the angular position and the acceleration when the velocity crosses zero, while the sliding friction model is established by the angular-segmented Stribeck function, and the friction parameters of the adjacent segment are linearly smoothed. A feedforward compensation based on the proposed model was performed on the RVTS, and its control performance was compared with that using the classical Stribeck model. The comparison results show that when using the proposed friction model, the low-speed-motion smoothness of the RVTS can be improved by 14.2%, and the maximum zero-crossing speed error can be reduced by 37.5%, which verifies the validity of the proposed friction model, as well as the compensation method

    Hybrid-learning-based classification and quantitative inference of driver braking intensity of an electrified vehicle

    Get PDF
    The recognition of driver's braking intensity is of great importance for advanced control and energy management for electric vehicles. In this paper, the braking intensity is classified into three levels based on novel hybrid unsupervised and supervised learning methods. First, instead of selecting threshold for each braking intensity level manually, an unsupervised Gaussian Mixture Model is used to cluster the braking events automatically with brake pressure. Then, a supervised Random Forest model is trained to classify the correct braking intensity levels with the state signals of vehicle and powertrain. To obtain a more efficient classifier, critical features are analyzed and selected. Moreover, beyond the acquisition of discrete braking intensity level, a novel continuous observation method is proposed based on Artificial Neural Networks to quantitative analyze and recognize the brake intensity using the prior determined features of vehicle states. Experimental data are collected in an electric vehicle under real-world driving scenarios. Finally, the classification and regression results of the proposed methods are evaluated and discussed. The results demonstrate the feasibility and accuracy of the proposed hybrid learning methods for braking intensity classification and quantitative recognition with various deceleration scenarios

    Chemical Synthesis and Applications of Colloidal Metal Phosphide Nanocrystals

    Get PDF
    Colloidal nanocrystals (NCs) have emerged as promising materials in optoelectronic devices and biological imaging application due to their tailorable properties through size, shape, and composition. Among these NCs, metal phosphide is an important class, in parallel with metal chalcogenide. In this review, we summarize the recent progress regarding the chemical synthesis and applications of colloidal metal phosphide NCs. As the most important metal phosphide NCs, indium phosphide (InP) NCs have been intensively investigated because of their low toxicity, wide and tunable emission range from visible to the near-infrared region. Firstly, we give a brief overview of synthetic strategies to InP NCs, highlighting the benefit of employing zinc precursors as reaction additive and the importance of different phosphorus precursors to improve the quality of the InP NCs, in terms of size distribution, quantum yield, colloidal stability, and non-blinking behavior. Next, we discuss additional synthetic techniques to overcome the issues of lattice mismatch in the synthesis of core/shell metal phosphide NCs, by constructing an intermediate layer between core/shell or designing a shell with gradient composition in a radial direction. We also envision future research directions of InP NCs. The chemical synthesis of other metal phosphide NCs, such as II–V metal phosphide NCs (Cd3P2, Zn3P2) and transition metal phosphides NCs (Cu3P, FeP) is subsequently introduced. We finally discuss the potential applications of colloidal metal phosphide NCs in photovoltaics, light-emitting diodes, and lithium ion battery. An overview of several key applications based on colloidal metal phosphide NCs is provided at the end

    Metastasis-on-a-chip mimicking the progression of kidney cancer in the liver for predicting treatment efficacy.

    Get PDF
    Metastasis is one of the most important factors that lead to poor prognosis in cancer patients, and effective suppression of the growth of primary cancer cells in a metastatic site is paramount in averting cancer progression. However, there is a lack of biomimetic three-dimensional (3D) in vitro models that can closely mimic the continuous growth of metastatic cancer cells in an organ-specific extracellular microenvironment (ECM) for assessing effective therapeutic strategies. Methods: In this metastatic tumor progression model, kidney cancer cells (Caki-1) and hepatocytes (i.e., HepLL cells) were co-cultured at an increasing ratio from 1:9 to 9:1 in a decellularized liver matrix (DLM)/gelatin methacryloyl (GelMA)-based biomimetic liver microtissue in a microfluidic device. Results:Via this model, we successfully demonstrated a linear anti-cancer relationship between the concentration of anti-cancer drug 5-Fluorouracil (5-FU) and the percentage of Caki-1 cells in the co-culture system (R2 = 0.89). Furthermore, the Poly(lactide-co-glycolide) (PLGA)-poly(ethylene glycol) (PEG)-based delivery system showed superior efficacy to free 5-FU in killing Caki-1 cells. Conclusions: In this study, we present a novel 3D metastasis-on-a-chip model mimicking the progression of kidney cancer cells metastasized to the liver for predicting treatment efficacy. Taken together, our study proved that the tumor progression model based on metastasis-on-a-chip with organ-specific ECM would provide a valuable tool for rapidly assessing treatment regimens and developing new chemotherapeutic agents

    Development of a small-diameter and high-resolution industrial endoscopy with CMOS image sensor

    Get PDF
    In the industrial field, an endoscope is typically employed for the observation and inspection of internal defect and corrosion of an engine and chemical plant. Current industrial optical endoscopes normally use CMOS sensor which offers best performance as an image pickup device. Here we report experimental demonstration of an industrial endoscope modality consisting of a 5 mm diameter rigid tube and 1280 × 960 pixels CMOS camera, which enables accurate diagnosis of small-scale industrial components with hollow shape. As a proof of concept, we successfully perform arc-surface imaging at a resolution of 57 lp/mm and ± 30^o field of view. Finally, potentially applying the wavefront coding method to extend the depth of field of endoscopic system is comprehensively discussed

    Design of an omnidirectional single-point photodetector for large-scale spatial coordinate measurement

    Get PDF
    In high precision and large-scale coordinate measurement, one commonly used approach to determine the coordinate of a target point is to utilize the spatial trigonometric relationships between multiple laser transmitting stations and the target point. A light receiving device at target point is the key element in large-scale coordinate measurement systems. To ensure high-resolution and highly-sensitive spatial coordinate measurement, a high-performance and miniaturized omnidirectional single-point photodetector (OSPD) is highly desired. Here we report one design of OSPD using aspheric lens, which achieves enhanced reception angle of -5 to 45 degree in vertical and 360 degree in horizontal. As the heart of our OSPD, the aspheric lens is designed in geometric model and optimized by LightTools Software, which enables reflecting wide-angle incident light beam into the single-point photodiode. The performance of home-made OSPD is characterized with working distances from 1 m to 13 m and further analyzed utilizing established geometric model. The experimental and analytic results verify that our new device is highly suitable for large-scale coordinate metrology. The developed device also holds great potential in various applications such as omnidirectional vision sensor, indoor global positioning system, optical wireless communication systems

    Carotenoid Accumulation and Its Contribution to Flower Coloration of Osmanthus fragrans

    Get PDF
    Among naturally occurring pigments, carotenoids are importantly involved in the photosynthesis of plants and responsible for the coloration of petals and fruits. Osmanthus fragrans Lour., a famous ornamental plant, has many cultivars with different flower color. Petal coloration in O. fragrans mainly depends on the kinds of carotenoids and their contents. To investigate the mechanism of flower coloration in different cultivars, an analysis of phenotypic classification, phytochemistry, as well as the expression of carotenoid metabolism genes based on different groups was performed in the present study. Two main clusters including the orange-red cluster containing Aurantiacus cultivars and the yellowish-white cluster containing the other three cultivar groups were classified using the CIEL∗a∗b∗ system. No significant differences in flavonoid contents were observed between these two clusters. However, carotenoids, especially α-carotene and β-carotene, were found to have crucial roles in the diversity of floral coloration among the different cultivars. Carotenoid compositions in the petals of cultivars from both clusters consisted of α-carotene, β-carotene, α-cryptoxanthin, β-cryptoxanthin, lutein, and zeaxanthin, but carotenoid accumulation patterns during the flowering process were different. The petals of the yellowish-white cultivars exhibited high contents of β-carotene, lutein and α-carotene, whereas the petals of the orange-red cultivars mainly contained β-carotene and α-carotene. The profound diversity in the total carotenoid concentrations in the two clusters was determined by the transcript levels of OfCCD4. Furthermore, the accumulation of upstream products with orange color in orange-red cultivars was partially due to the low expression of OfCHYB, whereas the relatively higher OfCHYB expression in the petals of the yellowish-white cultivars led to higher proportions of lutein, which is yellow. We also found that downregulation of OfLCYE, which encodes -ring cyclase, indicated that the carotenoid flux of most cultivars mainly resulted in more β, β-branched products. Additionally, carotenoid biosynthesis in green tissues and petals was compared, revealing the tissue specificity of carotenoid accumulation in O. fragrans. Therefore, the effects of multiple genes on carotenoid accumulation give rise to the colorful O. fragrans
    corecore