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Abstract—The recognition of driver’s braking intensity is of
great importance for advanced control and energy management
for electric vehicles. In this paper, the braking intensity is
classified into three levels based on novel hybrid unsupervised and
supervised learning methods. First, instead of selecting threshold
for each braking intensity level manually, an unsupervised
Gaussian Mixture Model is used to cluster the braking events
automatically with brake pressure. Then, a supervised Random
Forest model is trained to classify the correct braking intensity
levels with the state signals of vehicle and powertrain. To obtain a
more efficient classifier, critical features are analyzed and selected.
Moreover, beyond the acquisition of discrete braking intensity
level, a novel continuous observation method is proposed based on
Artificial Neural Networks to quantitative analyze and recognize
the brake intensity using the prior determined features of vehicle
states. Experimental data are collected in an electric vehicle under
real-world driving scenarios. Finally, the classification and
regression results of the proposed methods are evaluated and
discussed. The results demonstrate the feasibility and accuracy of
the proposed hybrid learning methods for braking intensity
classification and quantitative recognition with various
deceleration scenarios.

Index Terms—Braking Intensity, Hybrid Learning, Gaussian
Mixture Model, Random Forest, Artificial Neural Networks,
Electric Vehicle.

I. INTRODUCTION

UTOMATED vehicles and intelligent transportation
systems have been gaining increasing attention from both

academia and industrial sectors [1, 2]. Intelligent vehicles have
increased their capabilities in highly and even fully automated
driving, and it is believed that highly automated vehicles are
likely to be on public roads within a few years. However, open

challenges still remained due to strong uncertainties of driver
behaviors and cognition [3]. Thus, before transitioning to fully
autonomous driving, human driver behavior still requires to be
better understood. This is not only necessary to enhance the
safety, performance and energy efficiency of the vehicles, but
also to adjust to the driver’s needs, potentiate drivers’
acceptability and ultimately meet drivers’ intention within a
safety boundary.

Driver behaviors and cognition, including the operation
actions, driving styles, intention, attention, distraction, and
operation preferences, have been widely investigated by
researchers worldwide from different perspectives [4-6]. And it
has been concluded that driver behaviors have great impacts on
the emission, fuel economy, ride comfort and safety for ground
vehicles [7-9]. Among various driver operations, braking
manoeuver is one of the most significant ones [10-13]. As a
safety-critical system, braking system and its control are of
great importance [14-17]. Therefore, a better understanding of
driver’s braking intention, precise recognition of the braking
demand, estimating the braking intensity, and identifying the
braking style, will benefit the active chassis control and energy
management, improving vehicle’s safety, comfort and
efficiency.

For drivers’ braking manoeuvers, existing research is mainly
focused on the following aspects: braking intention inference,
braking style identification, and braking intensity recognition.

Since braking styles and braking actions are of capability to
reflect drivers’ mental status with the current driving context,
related studies were also conducted. In [18], driver’s braking
styles were grouped into three classes, namely the light or no
braking, normal braking and emergency braking. EEG signals
along with the vehicle status information from controller area
network (CAN) bus were used to infer and classify driver’s
braking intention. In [19], to predict driver’s braking intention
before the pedal operation, a remaining time to brake pedal
operation (TTBP) estimation method based on the combined
unscented kalman filter and particle filter was proposed. In [6],
an input-output hidden markov model (IOHMM) was applied
to predict driver’s pedal action by incorporating both road
information and individual driving styles. The maximum
efficient prediction horizon can reach up to 60 seconds.

In existing studies, driver’s braking intensity is usually
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estimated as discrete states, which is similar with the
identification of the braking styles. However, in some
situations, a continuous quantification of the braking pressure
can be more useful and efficient for vehicle control. In [20], a
method of constructing a longitudinal driver model based on a
recursive least-square self-learning scheme was developed. The
driver model takes vehicle motion states, including time-
headway (THW) and time-to-collision (TTC), as inputs, and
outputs the estimated values of throttle pedal position and brake
pressure. In [21], the estimation method of wheel cylinder
pressure and its relationship with anti-lock braking system
(ABS) were investigated. An extended kalman filter that
combines two normal pressure estimation models (the hydraulic
model and tyre model) was proposed to predict the braking
pressures. In addition, the impacts of continuous estimation of
braking pressure on the fault-diagnosis and fault-tolerant
control of electric vehicles were also reported [22, 23].
Nevertheless, the existing research on driver braking behavior
analysis mainly adopts conventional theories and approaches of
control engineering with complex mathematical models, a
machine-learning-based study has rarely been reported.

In order to further advance intelligent control of vehicles and
novel design of ADAS, in this paper a hybrid machine learning
scheme is proposed to classify driver braking intensity levels
and quantitatively estimate the brake pressure. An unsupervised
Gaussian Mixture Model (GMM) method is applied to
automatically label braking intensity, and a supervised Random
Forest (RF) model is trained to classify the braking action using
the output label of GMM and other vehicle states. Then, a
regression Artificial Neural Networks (ANN) based brake
pressure estimation algorithm, which is able to be aware of the
current brake scenario and assist active chassis control, is
proposed. Real vehicle data are collected, and the hybrid-
learning-based methodology is experimentally verified.

The contributions of this work are as follows. Firstly, a
combination of unsupervised and supervised machine learning
scheme is proposed to automatically label and infer driver’s
braking intensity. Secondly, beyond the existing studies in
discrete recognition of driver’s deceleration actions or
intentions, this work proposes a quantitative approach
continuously estimating the braking pressure applied by driver.
The proposed approaches could lead to a sensorless design of
the braking control system, with a great potential to remove the
brake pressure sensor existing in the current products, largely
reducing the system cost. Moreover, the brake pressure
estimation technique provides an additional redundancy for
braking system, enhancing the safety of the system.

The rest of this paper is organized as follows. Section II
describes the high-level architecture, methodology and detailed
algorithms. In Section III, the testing vehicle and scenarios, and
experimental methods are described. Section IV presents the
testing results of the braking intensity classification and brake
pressure prediction with proposed algorithms. In Section V,
performance investigation with a reduced order feature vector
is discussed, followed by conclusions in Section VII.

II. PROPOSED HYBRID- LEARNING-BASED ARCHITECTURE

AND ALGORITHMS

In order to realize the objectives of classification and
quantitative recognition of braking intensity, the high-level
methodology and related algorithms are synthesized. The
algorithms are mainly comprised of three components, namely
the unsupervised labelling of braking intensity level using
GMM, supervised classification of braking intensity level using
RF, and continuous quantitative recognition of braking
intensity based on ANN. The details of the system architecture
and algorithms are described as follows.

A. High-level Architecture of the Proposed Algorithms

The high-level system architecture with proposed
methodology are shown in Fig. 1. The GMM receives the brake
pressure of master cylinder as the input, and then yields the
labels of the braking intensity levels through learning. This
label vector will be used as the desired output of the supervised
RF learning algorithm. The RF model takes vehicle state
information from CAN bus as model input, and aims to
recognize the real braking intensity level without using brake
pressure signals, providing a sensorless solution. Furthermore,
a feedforward Neural Network (FFNN) model is used to
quantitatively observe the brake intensity, which is reflected by
the brake pressure exerted by driver’s operation. The FFNN
takes the brake pressure as the model training label with similar
input signals as used in the RF model.

This proposed methodology enables the intelligent
classification and quantitative inference of driver braking
intention, and it can be used to assist the advanced control and
energy management for electrified vehicles, especially during
regenerative braking, by augmenting the knowledge of driver’s
intention and style. Detail information of CAN bus signals used
for model training and testing will be described in the following
sections.

B. Classification of Braking Intention Level Using GMM

According to the above proposed methodology, driver’s
braking intention is firstly clustered using a GMM model.
GMM is a probability density function that is represented by the
sum of weighted sub Gaussian components [24]. In this study,
the GMM is adopted to obtain the probability distribution of the
brake pressure data with an unsupervised learning approach.
The brake pressure was measured in the master cylinder by a
hydraulic pressure sensor. One advantage of the above
proposed approach is that the GMM is an unsupervised learning
method requiring no training labels and it is very flexible to
select different number of clusters. In this work, there are in
total three clusters generated by GMM, representing the pre-
braking, moderate braking, and intensive braking, respectively.

The series of the brake pressure data can be described as � =
{��⋯ ��}, where � is the final time index. Then the GMM can
be represented by the following equation:

�(��|�) = ∑ ���(��|�� , ∑�)�
��� (1)

where �� is the 1-Dimensional value of brake pressure , � is the
parameters of GMM, � is the total number of component in the
model (three in this case), �� is the weight of each component’s
Gaussian distribution function and the sum of �� equals to one.



3

Fig. 1. Illustration of the proposed hybrid-learning-based architecture.

�(��|�� , ∑�) is the univariate Gaussian distribution function
which can be given by:

�(�|�, ∑) =
�

(��)�/�|∑|�/�
exp[−

�

�
(� − �)�∑��(� − �)] (2)

where D is the dimension of the data vector and it is taken as 1
in this case. A complete structure of GMM, which contains
three parameters, can be represented as:

� = {�� , �� , ∑�} (3)

Given the training data of brake pressure, the GMM can be
trained with both maximum likelihood estimation (MLE) and
maximum a posterior estimation (MAP). The most common
method for GMM training is the Expectation-Maximization
(EM) maximum likelihood estimation algorithm [25]. Suppose
the training dataset of brake pressure is with the format of � =
{x�⋯x�} , then the overall likelihood of the GMM can be
calculated by:

�(�|�) = ∏ �(��|�)
�
��� (4)

Substituting log likelihood function to Eq. (4), the above
function can be transformed to a much easier one:

�(�) = ∑ log �(��|�)�
��� (5)

Due to the nonlinear characteristics of the log function, the
utilization of the Eq. (5) makes it hardly to figure out the
maximization directly. Therefore, EM is selected to compute
the maximization with an iterative process, which contains two
steps, i.e. the E-step and the M-step.

1) E-step: estimate the posterior probability ���� of each
component � with data point �.

���� =
���(��|��

(���)
)

∑ ����(��|���
(���)

)��
(6)

2) M-step: update the model parameters according to the
estimated posterior probability in E-step.

�� =
�

�
∑ ���� =

���

�

�
��� (7)

�� =
���∙��

���
=

∑ ����
�
��� ∙��

∑ ����
�
���

(8)

∑� =
���(�����)(��	�	��)�

���
(9)

C. Braking Intention Classification Using RF

Following the above section, to learn the output label from
GMM and yield accurate results correspondingly, a supervised
machine learning method is then required. According to the
study in [26], Random Forest algorithm achieved the best
results on 121 public datasets among 179 classification
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algorithms. Thus, in this study, with a great capability to
accurately classify objects, the RF algorithm is used to classify
and further infer the braking intention level using vehicle and
powertrain signals obtained from CAN bus. And its
performance of the braking intention classification will be
analyzed and compared with other existing ones in the
following sections.

A Random Forest is an ensemble learning method which is
constructed with a combination of multiple weighted decision
trees [27]. Decision tree, also known as Classification Trees and
Regression Trees (CART), is a popular machine learning
method that has been used in many pattern recognition and
prediction tasks [28]. One decision tree is constructed with one
root node, multiple middle nodes and leaf nodes. The decision
results are represented by the leaf nodes in CART. Specifically,
for the classification trees, the outputs are the discrete labels of
the classification objects, while the outputs of regression trees
are the estimated continuous values. The decision nodes and
decision tree structure are determined by minimizing the
information Entropy �(�) and maximizing the information
gain ��(�,�), as shown in Fig. 1. However, a single decision
tree is a weak learner and has limited ability to deal with those
problems with large amount of data or large dimensional feature
vectors. The RF, however, parallel combines multiple trees to
reduce the overfitting risk, and improves the generalization
ability with the bootstrap aggregating scheme (often known as
Bagging trees) [29].

RF enhances the model prediction performance by
introducing the random property during model training process.
Specifically, like other Bagging algorithms, RF randomly
selects subset of data as training data from the original data set
to train the sub decision trees. Besides, it introduce a random
subset feature selection technique to avoid getting highly
correlated predictors and models. Therefore, the sub decision
trees will be trained with different dataset as well as different
feature vectors, efficiently increasing the properties of the
whole RF model. The final output of RF is the ensemble of the
sub decision trees. There are mainly three ensemble methods,
namely averaging, voting, and learning. A common ensemble
classification algorithm is the one with weighed voting, as
shown in the following.

�(�) = 	 ���
������∑ ����

��
��� (�)

(10)

where � is the final output label, ��� is the label set

�����, ⋯ 	 ����, ⋯ �����, �� is learned weight of each tree output,

and ℎ�(�) is the output of tree � . The final output label of
braking intensity will be the voting results of each sub decision
trees.

D. Brake Pressure Estimation Based on ANN

According to the above analysis, discrete level estimation of
the brake intensity relies on the information of brake pressure.
In some modern brake systems, there are pressure sensors
directly providing the measurement of brake pressure. However
these sensors add considerable costs to the whole system. If the
estimation technique can be achieved, realizing a sensorless
braking system, then the system cost could be largely reduced.
Meanwhile, the brake pressure estimation technique provides
an additional redundancy for the safety-critical function of the
braking system. Thus in this paper, the Artificial Neural

Networks is used to observe the continuous state of brake
pressure based on vehicle and powertrain states. A multi-layer
feedforward neural network (FFNN) with a hidden layer is
trained to observer the brake pressure value. The architecture of
the FFNN features that the information flow only has one
direction and is transferred from the input layer to the output
one without cycles in the model. Since the FFNN is of great
ability to theoretically represent any complex polynomial
function with different hidden neuron, it is selected as the model
to quantitatively predict brake intention in this work.

As shown in Fig. 1, in training process, the FFNN uses both
CAN bus signals and the value of brake pressure as the
supervised output response. While during testing procedure, the
FFNN only adopts the CAN bus signals to identify the brake
pressure. The NN is construed by basic calculation units called
neurons, which is inspired by human neural system. The
neurons that located in different layers can be with different
thresholds as well as distinguished activation functions.
Neurons in each layer are interconnected with weightings. After
receiving the input signals, the neurons in the hidden layer
firstly sums all the weighted signals and compare it with the
neuron threshold. If the summation is larger than the threshold,
the neuron will be activated and outputs the processed value.
The mathematical model of the neuron can be given by:

�� = �(∑ ����
�
��� − 	�) (11)

where �� is the output of neuron � in the hidden layer, �() is the
activation function, � = {��⋯ ��} is the input from input layer,
�� is the corresponding weight, and � is the neuron threshold.
A differentiable Sigmoid function is adopted as the activation
function, which is with the form of:

�(�) =
�

�����
(12)

Once the model structure is determined and parameters are
initialized, the FFNN is to be trained with the method of
backward propagation of error (BP). BP is an iterative NN
training scheme, which consists of two basic steps including
propagation and weight update. The input signals from CAN
bus firstly propagate forward through the network to generate
an initial estimated value, then the yield value is compared with
the ground truth based on the loss function. In this study, the
mean square error is utilized as the loss function.

� =
�

�
∑ (�� − 	��)

��
��� (13)

where � is the mean square error of the actual value and the
desired one, � is the total number of data samples, �� and �� are
the values of ground truth and actual output, respectively.

After the propagation step, the weights of the network can be
updated by calculating the gradient of the loss function. The
optimal weights are expected to result in the global minimum
of the loss function. Suppose that ��,� is the weight between the

input neuron � and the hidden neuron �, and �� is the output of
the neuron i, then the gradient can be calculated using chain rule
presented as follows:

∆��,� =
��

���,�
=

��

���

���

��

��

���,�
(14)

where ∆��,� is the weight gradient, and �� is the gradient of the
sigmoid activation function shown in (13).

Finally, the weight can be updated at each step according to:
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���� = 	�� − 	��∆�� (15)

where ���� is the updated weight, �� is current weight, and ��
is the learning rate of the FFNN. Eq. (15) is the simplest
gradient descent updating method, more sophisticated model
training algorithms for ANN can be found in [30].

III. EXPERIMENTAL TESTING AND DATA PRE-PROCESSING

In order to validate the hybrid-learning-based methodology
and algorithms proposed above, vehicle testing with real-world
driving scenarios is required to be carried out. In this section,
the experiment scenario set-up and the test vehicle will be
introduced. The collected experimental data will be analyzed
through signal processing methods. Besides, the selected
feature vectors and model training process will be illustrated.

A. Experiment Design

As Fig. 2 shows, the testing is carried out on a chassis
dynamometer with an electric vehicle operating under typical
driving cycles. There are a lot of standards utilized for chassis
dynamometer driving cycles [31]. In this work, the New
European Drive Cycle (NEDC), containing the European Union
Urban Driving Cycle (ECE) and the Extra Urban Driving Cycle
(EUDC), is adopted. As Fig. 3 shows, the first section of the
NEDC, which is comprised of four successive ECE driving
cycles, exhibits a low-speed urban operating condition. The
second part, i.e. the EUDC section, represents a highway
scenario with the highest speed at 120 km/h.

Fig. 2. The testing vehicle with a chassis dynamometer during experiments.

Fig. 3 Speed profile of the driving cycle with corresponding braking pressure.

During testing, accessory devices such as the heater and air-
conditioner need to be switched off. The battery should be fully
charged with state of charge (SOC) being at 100% before the
test. And the test drive requires repeated NEDC driving cycles
with a maximum deviation of 2 km/h in the speed profile. Once

the vehicle is unable to follow up the target speed due to low
SOC or other reasons, then the experiment will be terminated.

B. Experimental Vehicle with brake blending system.

The vehicle utilized in the road tests is the electric passenger
car, and the structure of the vehicle with a regenerative and
hydraulic blended braking system is shown in Fig.4 (a). The
front wheels of this test electric vehicle are driven by a
permanent-magnet synchronous motor which can work in two
states as a driving motor or a generator. The battery, which is
connected to the motor through the d.c. bus, can be discharged
or charged for motoring or absorbing the regenerative power
during the braking process respectively. During deceleration,
the blended brake torque complies to the serial regenerative
strategy, i.e. the regenerative brake is applied at first, and the
hydraulic brake compensates the rest part of the overall braking
demand. The coordination of the blended brakes is able to
guarantee the brake comfort and regeneration efficiency of the
vehicle.

A schematic diagram of the hydraulic braking system is
shown in Fig. 4 (b). PFW, PFW and P0 denote the pressures of the
master cylinder, wheel cylinder and the low-pressure
accumulator, respectively. The inlet and outlet valves are
respectively PWM controlled. The structure of the wheel
cylinder can be simplified to a piston and spring. kFW is the
equivalent stiffness of the spring and rFW is the radius of the
wheel cylinder’s cross-sectional area.

Key parameters of the electrified vehicle and powertrain are
listed in Table 1.

Fig. 4. Diagram of the structure of the experimental vehicle with brake
system.
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TABLE 1
KEY PARAMETERS OF THE ELECTRIC VEHICLE AND POWERTRAIN.

Parameter Value Unit

Total vehicle mass 1360 kg

Wheel base 2.50 m

Frontal area 2.40 m2

Gear ratio 7.881 —

Nominal radius of tyre 0.295 m

Coefficient of air resistance 0.32 —

Motor peak power 45 kW

Motor maximum torque 144 Nm

Motor maximum speed 9000 rpm

Battery voltage 326 V

Battery capacity 66 Ah

C. Data Collection and Processing

The CAN bus data are sampled with a frequency of 100	��,
and 6327 seconds data are recorded in total. The raw data
contains six standard NEDC driving cycles. The collected data
of the vehicle speed and the brake pressure of the master
cylinder are shown in Fig. 3 and further processed in Table 2.

TABLE 2
STATISTICS DATA OF VEHICLE VELOCITY AND BRAKING PRESSURE

Variables Mean
Standard
Deviation

Max Min

Vehicle
Velocity

35.594 km/h 30.042 km/h 118.46km/h 0 km/h

Braking
Pressure

0.1857 MPa 0.4317 MPa 4.1728Mpa 0 MPa

Before training and testing the models through machine
learning methods, the raw data is first smoothed and filtered as
follows.

�� =
∑ ���
�
�

�
(16)

where �� is the value of a signal at time � , ��� is the n-th
sampled value of signal � at time step � , and N is the total
amount of samples per second.

Then, the input signals are scaled to the range from zero to
one in order to eliminate the influence brought by different
units.

D. Feature Selection and Model Training

In this work, the braking correlated signals and important
vehicle state variables are selected for the training of the
braking intensity classifier and brake pressure estimation
model. The brake pressure data is only used as a response signal
for FFNN training, and it is not used during the testing process.
When the EV is decelerating, the electric motor works at its
regenerative brake mode, recovering vehicle’s kinetic energy.
During this period, the value of battery current changes from
positive to negative, indicating that the battery is charged by
regenerative braking energy. Thus, the signals of battery current
and voltage are chosen as features. The signals that used for
model training in this work are listed below in details in Table
3.

As shown in Table 3, instead of using raw data from the CAN
bus only, statistical information, including the mean value, max
value, and standard deviation (STD) of the original data in the
past few seconds are also adopted. In this work, the values of

vehicle velocity during past five seconds are stored and used to
calculate the mean and STD values. Besides, the gradient values
of the battery current and voltage are also utilized.

TABLE 3
CAN BUS SIGNALS USED FOR MODEL TRAINING

No. Signal No. Signal
1 Velocity (��/ℎ) 7 Acceleration (�/��)
2 Accelerator Pedal Position 8 Mean Velocity (��/ℎ)
3 Battery Current (�) 9 STD of Velocity (��/ℎ)
4 Battery Voltage (�) 10 Max Velocity (��/ℎ)
5 Motor Speed (���/�) 11 Voltage Gradient (�/�)
6 Motor Torque (� ∙�) 12 Current Gradient (�/�)

After the feature vector being determined, the supervised
classification and regression models are trained. The overall
sampled data are divided into two sets, namely the training set
and the testing one. The testing data set used for model training
and validation contains 1400 sampled points, which is
randomly chosen from the raw and training data sets. To
modulate and evaluate the model performance, the K-fold cross
validation approach is used. K-fold cross validation method
randomly selects � − 1 folds from the training data to train the
RF and FFNN models, and the rest fold is utilized for testing.
The final assessment of the model performance is carried out
according to the � test results. In this work, the value of K is
set as 5. Considering the data quantity and the evidence that NN
with one hidden layer is able to estimate most of the complex
functions, the FFNN is constructed with a hidden layer. The
FFNN is then trained using a fast Levenberg-Marquardt (LM)
algorithm with 5-fold cross validation.

IV. EXPERIMENT RESULTS AND ANALYSIS

In this section, the experiment results of the above three
machine learning tasks are described. Firstly, labeling results of
braking intensity level using GMM will be illustrated. Then,
classification results of the braking intensity level with the RF
approach is to be presented. Finally, the results braking pressure
estimation using ANN will be shown. The algorithms are
implemented in Intel ® Core i7 2.5GH computer with the
MATLAB 2017a platform.

A. Labeling Result of Braking Intensity Level Using GMM

The Gaussian Mixture Model takes the braking pressure as
an input, and it outputs the Gaussian distribution of each cluster.
In order to reach good performance of the proper braking
intensity identifier, a suitable GMM is achieved based on the
proportion evaluation of each component. The final decision
thresholds of the GMM can be given by:

����� = 	 �
���	,																																						� < 0.05
������,																� < 1.25, � > 0.05
���ℎ,																																						� > 1.25

(17)

where � is the braking pressure.
Fig. 5 shows the labeling results with three different braking

intensity levels. The first cluster, which is represented by the
red points, is of low pressure area, representing driver’s low-
intensity brake demand and the pre-braking processes. In this
area, the low-level pressure is used to eliminate the mechanical
gaps of brake devices. The second cluster, which is represented
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by yellow points with pressure range from 0.15 MPa to 1.1
MPa, indicates driver’s moderate braking intensity. And the
third one indicating intensive braking is illustrated by the green
points with pressure over 1.1 MPa. According to the results, the
quantity of the cluster with low braking intensity is much larger
than the other ones, taking up 85.3% of the overall data points.
And the other two clusters share the rest of the data with similar
quantities of 7.7% and 7%, respectively. The results shows a
good balance maintained between the proportions and the
clusters diversity.

Fig. 5 Labeling results of braking intensity levels using GMM.

Fig. 6 illustrates the learned Gaussian distribution of the
GMM with the three components. Since the low braking
intensity group has much more data points and more significant
characteristics, the classification confidence of this group is
much higher than the other two groups. The moderate and the
intensive braking levels have relatively wider Gaussian
distributions and overlap with each other, showing that these
two classes have similar characteristics and their data
distributions can be roughly described by a single Gaussian
distribution function.

Fig. 6 Gaussian distribution of GMM for braking intensity level clustering.

B. RF-Based Classification Results of Braking Intensity Level

According to the above labelling, the classification results of
the braking intensity level given by Random Forest is analyzed
as follows. The RF classifier is constructed with 50 decision
trees, and the ANN is a FFNN with 50 neurons in the hidden
layer. As mentioned before, the task is to solve the three-class
classification problem with the labels given by GMM. The
classification performance is assessed from three different
aspects, namely the classification accuracy, the execution time
of model training, and the execution time of testing. The general
accuracy is defined as follows.

�� =
���	��	���

�
(18)

where �� is the general accuracy of the classification, � is the
total amount of data, ��,��,�� are the number of the correct
classification cases, respectively.

Moreover, the RF classifier is also compared with other
existing ones, including decision trees, support vector machine,
K-Nearest Neighbor and multi-layer feedforward neural
networks. The detailed classification performance and
comparison results are illustrated in Table 4.

TABLE 4
COMPARISON RESULTS OF THE BRAKING INTENSITY CLASSIFICATION

PERFORMANCE

General
Accuracy

Training
Time (s)

Testing Time
(obs/sec)

Decision Tree 0.969 4.061s ~73000

Quadratic
SVM

0.974 5.663s ~59000

Weighted
KNN

0.967 7.818s ~12000

ANN 0.971 3.201s ~30000

Random
Forest

0.977 6.086s ~27000

Fig. 7 Confusion matrix of the classification result given by RF.

The detail classification performance of the RF is illustrated
using a confusion matrix, as shown in Fig. 7. The result is
generated from the pre-selected 1400 data samples, containing
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1227 low-intensity samples, 106 moderate-intensity samples,
and 67 intensive ones. According to the result, cluster 1, i.e. the
low-intensity braking level, achieves the result of 100%
accuracy. The classification results of the second and third
clusters are not as accurate as that of the first one. These fault
classifications can be explained by the overlap phenomena of
the Gaussian distribution of the GMM. Although there are some
miss-classified occurs, their impacts on the overall system are
limited, and this will be discussed in the following section.

As mentioned in Section III, the RF algorithm adopts the
bootstrap method randomly selecting training data set and
training predictors from raw data to construct various decision
trees. In this process, about one third of the data will not being
used for the model training task, and this part of the data is
called the out-of-Bag (OOB) data [28]. The model testing error
of the OOB data, which has a similar accuracy with real testing
data, is sufficient to reflect the model generalization
performance [32]. Therefore, the OOB data is used as another
source to assess the model performance and estimate the
importance of the predictors [32, 33].

Fig. 8 illustrates the estimation results of predictor
importance with the OOB data set. It can be seen that the most
important predictor in the feature vector is the battery current,
following with vehicle velocity, acceleration and the standard
deviation of velocity. The battery voltage, voltage variation
rate, and current variation rate also exert impacts on the model
classification performance.

Fig. 8 The predictor importance estimation results of Random Forest model
using out-of-Bag data set.

C. Estimation Result of Braking Pressure Based on ANN

The ANN-based quantitative estimation result of braking
pressure is analyzed as follows. The regression result is
compared with other machine learning methods, including
regression decision tree, support vector machine, Gaussian
process model, and regression Random Forest. The models are
trained and tested with 5-fold cross validation methods. The
ANN and RF have 50 neurons and trees, which are similar with
the ones used in the classification task. The model performance
is evaluated via four properties, namely the coefficient of
determination (denote as R2), the root-mean-square-error
(RMSE), the training time, and the testing time, as shown in
Table 5. R2 and RMSE are common performance indexes that
has been widely accepted to evaluate the prediction accuracy.

The definitions of the R2 and RMSE are presented as follows.
Suppose the ground truth data set is � = {��⋯ ��}, and the
predicted value is � = {��⋯��}. The R2 is calculated as:

�� = 1 −
����

����
(19)

where ���� is the residual sum of square, and ���� is the total
sum of square. They are defined as:

���� = ∑ (�� − 	��)
�

� (20)

���� = ∑ (�� − 	��)�� (21)

where �� is the mean value of the ground truth data.
The RMSE can be calculated by:

���� = �∑ (���	��)
��

�

�
(22)

As shown in Table 5, the ANN algorithm yields the best
performance of brake pressure estimation. The running time of
training with ANN and RF is similar, however the testing speed
of ANN is much faster than that of the RF. Another interesting
phenomenon is that the single decision tree algorithm has much
shorter training time and a much faster testing speed than the
other algorithms. In terms of real-time application, the
regression decision tree could be a better candidate because of
its simplicity and high computation efficiency.

TABLE 5
COMPARISON OF BRAKING PRESSURE ESTIMATION PERFORMANCE

Methods R2 RMSE
(MPa)

Training
Time (s)

Testing Time
(obs/s)

Decision Tree 0.912 0.133 1.092 ~240000

Quadratic SVM 0.867 0.188 141.93 ~46000

Gaussian Process
Model

0.921 0.125 156.89 ~8100

ANN 0.935 0.101 3.42 ~82000

Random Forest 0.903 0.104 3.79 ~36000

Fig. 9 ANN-based braking pressure estimation results with 1400 testing data.

The ANN model estimation result with testing data is shown
in Fig. 9. The x-axis presents the 1400 data samples, and the y-
axis shows the estimation results of the scaled pressure of the
data samples. Since the input and output data for model training
is scaled to the range of [0, 1], the model testing output is then
falling within the range between 0 and 1 accordingly. Based on
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the results, the ANN model achieves high-precision regression
performance in most cases, and the overall root-mean-square
error (RMSE) is around 0.1 MPa, demonstrating the feasibility
and effectiveness of the developed algorithm.

The two most accurate models, namely the ANN and RF, are
further studied in details. The impacts of different number of
neurons and trees on the brake pressure prediction are analyzed.
The neuron numbers of ANN and the ensemble tree numbers of
RF are within the range from 10 to 100. The prediction results
of the algorithms are shown in Fig. 10 and Fig. 11. According
to Fig. 10, the overall performance of ANN is better than that
of the RF, and the best prediction performance is yield by FFNN
with number of neurons at 70. Because of using the gradient-
descent-based model learning method, compared to the RF with
relatively stable results, the accuracies of different FFNNs vary
significantly. This shows that the prediction performance of RF
changes little with different number of ensemble trees,
indicating its good robustness. Fig. 11 shows the linear
regression results given by the most accurate FFNN model with
70 neurons. It can be seen that the FFNN can accurately
estimate the braking pressure information using vehicle states
from the CAN bus.

Fig. 10 Comparison of the braking pressure estimation performance given by
ANN and RF.

Fig. 11 Regression performance of FFNN with 70 neurons.

Fig. 12 Vehicle road test results of the proposed approaches.

To further validate the feasibility and effectiveness of the
proposed approach, vehicle road test is carried out with the real-
time implementation of the algorithms. The test track is flat and
it has a dry surface with a high adhesion coefficient. As Fig. 12
shows, the road test data with a duration of 1500s contains ten
individual normal deceleration processes. Among these
decelerations, three typical intensities of the normal
deceleration, namely the intensive, medium, and mild ones, are
covered. According to the experiment results, the proposed
approach is able to accurately predict the value of the brake
pressure during deceleration. Comparing the prediction to the
ground truth measured by onboard hydraulic pressure sensor,
the values of R2 and the RMSE are over 0.85 and 0.2 MPa,
respectively, under such a naturalistic driving conditions,
demonstrating the accuracy and robustness of the developed
methods.

V. DISCUSSIONS

In the section, the fault classification of the intensive braking
cases, which has been shown in the above section, is further
analyzed based on the classification and regression results.
Moreover, the methodology for improving classification and
prediction performance by using a smaller feature vector, which
is obtained by the predictor importance estimation result of the
RF, is investigated.

A. Fault Classification of the Intensive Braking

According to the previous results in Fig. 7, the fault
classifications of RF mainly occurs in the moderate and
intensive braking levels. There are 13 moderate braking points
that are incorrectly classified into the intensive ones, and 20
intensive cases are identified as moderate ones. From the
perspective of braking safety, an intensive braking being
incorrectly identified as a moderate one is much more
dangerous than vice versa. Thus, the fault detection of intensive
braking cases is analyzed as follows.
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Fig. 13. The brake pressure estimation result of the intensive braking cases.

There are 67 intensive braking samples within the testing
dataset, among which 20 cases is of fault classification and 47
are correct ones. Fig. 13 shows the braking pressure prediction
results of the total 67 samples using ANN algorithm. The upper
and lower subplots present the fault and correct classification
cases, respectively. As the upper subplot shows, the braking
pressure of the fault classifications is mainly located within the
range from 0.3 to 0.4, corresponding to 1.2 MPa-1.6MPa in real
measurement. However, this above pressure range is around the
lower bound of the overall intensive braking samples, so it can
be accepted to be classified into the moderate level group.
Besides, most of the estimated pressure point generated by the
trained FFNN model can accurately follow the real value.
Therefore, we believe that the 20 fault classification samples
have small effects on the whole intensive braking process.

B. Performance with a Reduced Order Feature Vector

According to the analysis results illustrated in Fig. 8, the four
most important predictors of the raw data for classification are:
the battery current, the vehicle speed, the acceleration, and the
standard deviation of the speed. In order to extend the proposed
approach to conventional internal combustion engine (ICE)
vehicles by removing signals related to electric powertrains, in
this section, a new feature vector and dataset containing only
the above four signals are constructed and adopted to assess the
classification and prediction performance. The confusion
matrix of the classification and the predicted braking pressures
with the new feature vector and dataset are illustrated in Fig. 14
and Fig. 15, respectively.

As shown in Fig. 14, the new RF model, which is trained with
a low dimensional dataset, generates more accurate
classification results. The classifier is tested with 1400
randomly selected testing data points. The accuracies of the
moderate and intensive braking classification results are
improved from 85.8% to 91.7% and from 70.1% to 74.1%,
respectively.

Fig. 14. Braking intensity classification results given by RF using a lower
dimensional feature vector with 50 ensemble trees.

The estimation results of the braking pressure with the FFNN
model is shown in Fig. 15. Due to the dimension reduction, the
prediction accuracy of the FFNN slightly decreases. The values
of R2 and RMSE of the testing dataset become 0.905 and
0.123MPa. Although the braking pressure prediction
performance reduces, the FFNN model is still able to estimate
braking pressure with small errors in most of the situations,
indicating that that the proposed approach can be applied in
conventional ICE vehicles.

Fig. 15. Braking pressure prediction result given by FFNN using a reduced
dimensional feature vector with 50 neurons.

VI. CONCLUSIONS

In this paper, a hybrid-learning-based classification and
quantitative recognition methodology of driver braking
intensity is investigated. Three different braking intensity
levels, namely the low-intensity, the moderate and intensive
braking, are firstly identified using GMM algorithm. Then, a
Random Forest algorithm is proposed to classify the braking
intensity level based on the output label of GMM and vehicle
state variables from CAN bus. Finally, a continuous estimation
algorithm for braking pressure observation using Feedforward
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Neural Network is proposed. High-accuracy results of the
braking intensity classification and brake pressure prediction
are achieved with the developed hybrid machine learning
methods. In order to validate the algorithms, experimental data
are firstly collected from an electric vehicle under standard
NEDC driving cycles. Then, the hybrid learning methods are
tested and improved with the collected dataset. The testing
results show that the proposed methods, which require simple
modelling and parameter identification procedures, are able to
accurately classify the braking intensity levels and predict the
braking pressure correspondingly. It enables the sensorless
technology and provides an additional redundancy for the
safety-critical braking system, and it can be widely utilized in
energy management and active chassis control for various types
of ground vehicles.
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