30 research outputs found

    Trans-Differentiation of Neural Stem Cells: A Therapeutic Mechanism Against the Radiation Induced Brain Damage

    Get PDF
    Radiation therapy is an indispensable therapeutic modality for various brain diseases. Though endogenous neural stem cells (NSCs) would provide regenerative potential, many patients nevertheless suffer from radiation-induced brain damage. Accordingly, we tested beneficial effects of exogenous NSC supplementation using in vivo mouse models that received whole brain irradiation. Systemic supplementation of primarily cultured mouse fetal NSCs inhibited radiation-induced brain atrophy and thereby preserved brain functions such as short-term memory. Transplanted NSCs migrated to the irradiated brain and differentiated into neurons, astrocytes, or oligodendrocytes. In addition, neurotrophic factors such as NGF were significantly increased in the brain by NSCs, indicating that both paracrine and replacement effects could be the therapeutic mechanisms of NSCs. Interestingly, NSCs also differentiated into brain endothelial cells, which was accompanied by the restoration the cerebral blood flow that was reduced from the irradiation. Inhibition of the VEGF signaling reduced the migration and trans-differentiation of NSCs. Therefore, trans-differentiation of NSCs into brain endothelial cells by the VEGF signaling and the consequential restoration of the cerebral blood flow would also be one of the therapeutic mechanisms of NSCs. In summary, our data demonstrate that exogenous NSC supplementation could prevent radiation-induced functional loss of the brain. Therefore, successful combination of brain radiation therapy and NSC supplementation would provide a highly promising therapeutic option for patients with various brain diseases

    High levels of soluble herpes virus entry mediator in sera of patients with allergic and autoimmune diseases

    Get PDF
    Herpes virus entry mediator (HVEM) is a newly discovered member of the tumor necrosis factor receptor (TNFR) superfamily that has a role in herpes simplex virus entry, in T cell activation and in tumor immunity. We generated mAb against HVEM and detected soluble HVEM (SHVEM) in the sera of patients with various autoimmune diseases. HVEM was constitutively expressed on CD4+ and CD8+ T cells, CD19+ B cells, CD14+ monocytes, neutrophils and dendritic cells. In three-way MLR, mAb 122 and 139 were agonists and mAb 108 had blocking activity. An ELISA was developed to detect sHVEM in patient sera. sHVEM levels were elevated in sera of patients with allergic asthma, atopic dermatitis and rheumatoid arthritis. The mAbs discussed here may be useful for studies of the role of HVEM in immune responses. Detection of soluble HVEM might have diagnostic and prognostic value in certain immunological disorders

    Ectopic over-expression of tristetraprolin in human cancer cells promotes biogenesis of let-7 by down-regulation of Lin28

    Get PDF
    Tristetraprolin (TTP) is a AU-rich element (ARE) binding protein and exhibits suppressive effects on cell growth through down-regulation of ARE-containing oncogenes. The let-7 microRNA has emerged as a significant factor in tumor suppression. Both TTP and let-7 are often repressed in human cancers, thereby promoting oncogenesis by derepressing their target genes. In this work, an unexpected link between TTP and let-7 has been found in human cancer cells. TTP promotes an increase in expression of mature let-7, which leads to the inhibition of let-7 target gene CDC34 expression and suppresses cell growth. This event is associated with TTP-mediated inhibition of Lin28, which has emerged as a negative modulator of let-7. Lin28 mRNA contains ARE within its 3′-UTR and TTP enhances the decay of Lin28 mRNA through binding to its 3′-UTR. This suggests that the TTP-mediated down-regulation of Lin28 plays a key role in let-7 miRNA biogenesis in cancer cells

    Banking performance’ determinants

    No full text
    У статті розглянуто фактори впливу на ефективність банківського бізнесу. З позиції необхідності управління ефективністю банківського бізнесу запропоновано внутрішні фактори розглядати як сукупність статусних характеристик банку та характеристик його бізнес-моделі.The article deals with banking performance’s determinants. In context of banking performance management its proposed internal factors to consider as a set of status characteristics and the characteristics of the bank's business model

    Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas

    No full text
    A number of recent reports have demonstrated that only CD133-positive cancer cells of glioblastoma multiforme (GBM) have tumor-initiating potential. These findings raise an attractive hypothesis that GBMs can be cured by eradicating CD133-positive cancer stem cells (CSCs), which are a small portion of GBM cells. However, as GBMs are known to possess various genetic alterations, GBMs might harbor heterogeneous CSCs with different genetic alterations. Here, we compared the clinical characteristics of two GBM patient groups divided according to CD133-positive cell ratios. The CD133-low GBMs showed more invasive growth and gene expression profiles characteristic of mesenchymal or proliferative subtypes, whereas the CD133-high GBMs showed features of cortical and well-demarcated tumors and gene expressions typical of proneuronal subtype. Both CD133-positive and CD133-negative cells purified from four out of six GBM patients produced typical GBM tumor masses in NOD-SCID brains, whereas brain mass from CD133-negative cells showed more proliferative and angiogenic features compared to that from CD133-positive cells. Our results suggest, in contrast to previous reports that only CD133-positive cells of GBMs can initiate tumor formation in vivo CD133-negative cells also possess tumor-initiating potential, which is indicative of complexity in the identification of cancer cells for therapeutic targeting

    Identification of Genomic and Molecular Traits that Present Therapeutic Vulnerability to HGF-targeted therapy in Glioblastoma.

    No full text
    Background: Cancer is a complex disease with profound genomic alterations and extensive heterogeneity. Recent studies on a large-scale genomics have shed lights on the impact of core oncogenic pathways which are frequently dysregulated in a wide spectrum of cancer types. Aberrant activation of hepatocyte growth factor (HGF) signaling axis has been associated with promoting various oncogenic programs during tumor initiation, progression, and treatment resistance. As a result, HGF-targeted therapy has emerged as an attractive therapeutic approach. However, recent clinical trials involving HGF-targeted therapies have demonstrated rather disappointing results. Thus, an alternative, in-depth assessment of new patient stratification is necessary to shift the current clinical course. Methods: To address such challenges, we have evaluated therapeutic efficacy of YYB-101, a HGF neutralizing antibody, in a series of primary glioblastoma stem cells (GSCs) both in vitro and in vivo. Furthermore, we performed genome and transcriptome analysis to determine genetic and molecular traits that exhibit vulnerability to HGF-mediated therapy. Results: We have identified differentially expressed genes, including MET, KDR, and SOX3 which are associated with tumor invasiveness, malignancy, and unfavorable prognosis in glioblastoma patients. We also demonstrated HGF-MET signaling axis as a key molecular determinant in GSC invasion and also discovered that a significant association in HGF expression existed between mesenchymal phenotype and immune cell recruitment. Conclusions: Up-regulation of MET and mesenchymal cellular state are essential in generating HGF-mediated therapeutic responses. Our results provide an important framework for evaluating HGF-targeted therapy in future clinical settings
    corecore